

ST.ANNE’S
COLLEGE OF ENGINEERING AND TECHNOLOGY

EC6612 VLSI DESIGN LAB

 (FOR III B.E ELECTRONICS AND COMMUNICATION ENGINEERING STUDENTS)

 NAME : ___

 REGISTER NO : ___

 SEMESTER : ___

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

PREPARED BY: Mr. S. BALABASKER

AS PER ANNA UNIVERSITY (CHENNAI) SYLLABUS

2013 REGULATION

OBSERVATION NOTE

ANGUCHETTYPALAYAM, PANRUTI – 607 106

DECEMBER 2019 - MAY 2019

ABOUT OBSERVATION NOTE & PREPARATION OF RECORD

 This Observation contains the basic diagrams of the circuits enlisted in the syllabus

of EC6612 VLSI DESIGN LAB course, along with the design the design of various

components of the Integrated circuit

 Aim of the experiment is also given at the beginning of each experiment. Once the

student is able to design the circuit as per the circuit diagram, he/she is supposed to

go through the instructions carefully and do the experiments step by step.

 They should note down the readings (observations) and tabulate them as specified.

 It is also expected that the students prepare the theory relevant to the experiment

referring to prescribed reference book/journals in advance, and carry out the

experiment after understanding thoroughly the concept and procedure of the

experiment.

 They should get their observations verified and signed by the staff within two days

and prepare & submit the record of the experiment while they come for the

laboratory in subsequent week.

 The record should contain experiment No., Date ,Aim, Apparatus required, Theory,

Procedure and result on one side(i.e., Right hand side, where rulings are provided)

and Circuit diagram, Design, Model Graphs, Tabulations and Calculations on the

other side (i.e., Left hand side, where no rulings is provided)

 All the diagrams and table lines should be drawn in pencil

 The students are directed to discuss & clarify their doubts with the staff members as

and when required. They are also directed to follow strictly the guidelines

specified.

EC6612 VLSI DESIGN LAB

SYLLABUS

FPGA BASED EXPERIMENTS.

1. HDL based design entry and simulation of simple counters, state machines, adders and

multipliers .

2. Synthesis, P&R and post P&R simulation of the components simulated in (I) above.

Critical paths and static timing analysis results to be identified. Identify and verify

possible conditions under which the blocks will fail to work correctly.

3. Hardware fusing and testing of each of the blocks simulated in (I). Use of either

chipscope feature (Xilinx) or the signal tap feature (Altera) is a must. Invoke the PLL and

demonstrate the use of the PLL module for clock generation in FPGAs.

IC DESIGN EXPERIMENTS: (BASED ON CADENCE / MENTOR GRAPHICS /

EQUIVALENT)

4. Design and simulation of a simple 5 transistor differential amplifier. Measure gain,

ICMR, and CMRR

5. Layout generation, parasitic extraction and resimulation of the circuit designed in (1)

6. Synthesis and Standard cell based design of an circuits simulated in 1(I) above.

Identification of critical paths, power consumption.

7. For expt (c) above, P&R, power and clock routing, and post P&R simulation.

8. Analysis of results of static timing analysis.

LIST OF EXPERIMENTS

S.NO DATE NAME OF THE EXPERIMENT
PAGE

NO

DATE OF

SUBMISSION

MARK

(10)
SIGNATURE

LIST OF EXPERIMENTS

S.NO DATE NAME OF THE EXPERIMENT
PAGE

NO

DATE OF

SUBMISSION

MARK

(10)
SIGNATURE

1 Prepared By Mr.S.BALABASKER,AP/ECE

XILINX

TOOLS

2 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:

STUDY OF SIMULATION TOOLS
DATE:

AIM:

To study simulation tools using Xilinx software tool.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

PROCEDURE:

1. Now start the Xilinx ISE Design Suite 12.1

2. Go to file and click new project

3. Enter the project name and click next

4. Select the family name is Spartan 3E, speed is -4 and simulator is verilog click next and

click Finish.

5. Click new source.

6. Select verilog module and type file name and click next.

7. Assign input and output port and click next.

8. Finally the report is shown click finish.

9. Type the program save and click synthesis.

10. To see the output wave form change the source from implementation to simulation and click

simulator behavior model in ISim simulator.

11. Give values to the input variables and then click run

12. In wave window, click run icon and you can see corresponding output.

3 Prepared By Mr.S.BALABASKER,AP/ECE

Steps to use Xilinx tool:

Start the Xilinx Project Navigator by using the desktop shortcut or by using the

 Start  Programs  Xilinx ISE  Project Navigator.

 In the Project Navigator window go to FILE New project Click on new source verilog

module and give the name inverter.v Define portsFinish

 Select devicesGeneral purpose Spartan 3 ISE simulatorverilog

4 Prepared By Mr.S.BALABASKER,AP/ECE

 In the create new source window select source type as verilog module give file name

 assign inputs and outputs  click next finishyesnext nextfinish

 Double click on source filecomplete the verilog code for inverter

5 Prepared By Mr.S.BALABASKER,AP/ECE

 Check syntax, and remove errors if present

 Simulate the design using ISE Simulator Highlight inverter.v file in the Sources in Project

window. To run the Behavioral Simulation, Click on the symbol of FPGA device and then right

clickClick on new sourceClick on verilog text fixtureGive file name with _tb finish

 Generate test bench file after initial begin assign value for inputs Click on simulate behavioral

model see the output.

RESULT:

6 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:

STUDY OF SYNTHESIZE TOOLS
DATE:

AIM:

To study synthesize tools using Xilinx software tool.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY:

Synthesis is an automatic method of converting a higher level abstraction to a lower level

abstraction. The synthesis tool convert Register Transfer Level (RTL) description to gate level netlists.

These gate level netlists consist of interconnected gate level macro cells. These gate level netlists currently

can be optimized for area, speed etc., The analyzed design is synthesized to a library of components,

typically gates, latches, or flipflops. Hierarchical designs are synthesized in bottom up fashion, that is

lower level components are synthesized before higher level components. Once the design is synthesized

we have a gate level netlist. This gate level netlist can be simulated. Delay for the individual components

are available as part of the description of the component libraries. Timing accurate simulation is not

possible at this point because the actual timing characteristics is determined by the physical placement of

the design within the FPGA chip. However, the functional simulation that is possible at this point is quite a

bit more accurate than simulation based on user specified delays. After run the synthesize in process

window then full adder model is converted to netlist file.

To convert the RTL to gates, three steps typically occur:

* The RTL description is translated to an unoptimized boolean description usually consisting of

primitive gates such as AND and OR gates, flip-flop, and latches. This is a functionally correct but

completely unoptimized description.

* Boolean optimization algorithms are executed on this boolean equivalent description to

produce an optimized boolean equivalent description.

* This optimized boolean equivalent description is mapped to actual logic gate by making use of a

technology library of the target process.

PROCEDURE:

1. Now start the Xilinx ISE Design Suite 12.1

2. Go to file and click new project

3. Enter the project name and click next

4. Select the family name is Spartan 3E, speed is -4 and simulator is verilog click next and

click Finish.

5. Click new source.

6. Select verilog module and type file name and click next.

7 Prepared By Mr.S.BALABASKER,AP/ECE

7. Assign input and output port and click next.

8. Finally the report is shown click finish.

9. Type the program save and click synthesis.

10. Go to synthesisView RTL schematic

PROGRAM:

module full_adder (a,b,c,sum,carry);

output sum,carry ;

input a,b,c ;

assign sum = a ^ b ^ c;

assign carry = (a&b) | (b&c) | (c&a);

endmodule

RTL SCHEMATIC:

RESULT:

8 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:

PLACE AND ROOT AND BACK ANNOTATION FOR FPGAS
DATE:

AIM:

To study place and root and back annotation for FPGAs synthesize tools using Xilinx software

tool.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY:

To map this Full adder design onto the FPGA. The primitive hardware elements that are available

in Xilinx xc3s500e chip, namely lookup tables and positive-edge-triggered flip-flops are organized as a

two dimensional array of CLBs. The netlist from synthesize is composed of gates, latches, and flip-

flops. It is necessary to assign CLB to netlist primitives. This is the process of mapping a design. For

example gates will be assigned to look-up tables. This process effectively translates the gate level netlist

produce by the synthesize compiler into a netlist of FPGA primitive hardware components. Each elements

of this new netlist corresponds to a hardware primitive in the FPGA Chip. The mapped design produces

identifies the set of FPGA hardware primitives and their interconnection. The next step is to assign each of

the components in the netlist to a equivalent physical primitives on the FPGA chip. Once this assignment

or placement is made the interconnection between the components in the netlist must be made within the

chip. This will require routing signals through the switch matrix and other inter connect resources

available on FPGA Chip. This Place and route layout was generated from Xilinx ISE Floor planner. After

place and route the design can be simulated to validate the design. At this point timing is more accurate

because the propagation delays along routed signals and through CLBs can be more accurately estimated.

This is particularly important for designs that are operating under tight timing tolerance.

To convert the RTL to gates, three steps typically occur:

* The RTL description is translated to an unoptimized boolean description usually consisting of

primitive gates such as AND and OR gates, flip-flop, and latches. This is a functionally correct but

completely unoptimized description.

* Boolean optimization algorithms are executed on this boolean equivalent description to

produce an optimized boolean equivalent description.

* This optimized boolean equivalent description is mapped to actual logic gate by making use of a

technology library of the target process.

PROCEDURE:

1. Now start the Xilinx ISE Design Suite 12.1

2. Go to file and click new project

3. Enter the project name and click next

4. Select the family name is Spartan 3E, speed is -4 and simulator is verilog click next and

9 Prepared By Mr.S.BALABASKER,AP/ECE

click Finish.

5. Click new source.

6. Select verilog module and type file name and click next.

7. Assign input and output port and click next.

8. Finally the report is shown click finish.

9. Types the program saves and clicks synthesis.

10. Choose Implementation user constraints I/O pin planning (plan ahead) pre- synthesis, type the

input /output port.

PROGRAM:

module full_adder (a,b,c,sum,carry);

output sum,carry ;

input a,b,c ;

assign sum = a ^ b ^ c;

assign carry = (a&b) | (b&c) | (c&a);

endmodule

RESULT:

10 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO: STUDY OF FPGA BOARD AND ON-BOARD LED’S AND

SWITCHES DATE:

AIM:

To Study Field Programmable Gate Array (FPGA) board and to test the on-board LEDs and

Switches using Xilinx software tool.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY:

DIP SWITCHES:

 When in the UP or ON position, a switch connects the FPGA pin to Vcc, a logic High. When

DOWN or in the OFF position, the switch connects the FPGA pin to ground, a logic low. The switches

typically exhibit about 2ms of mechanical bounce and there is no active debouncing circuitry, although

such circuitry could easily be added to the FPGA design programmed on the board.

KEY SWITCHES:

 The key switches can provide pulse input to the FPGA. The switches connect to an associated

FPGA pin. Pressing a key generates logic High on the associated FPGA pin. There is no active

debouncing circuitry on the key switches.

LEDS:

 Test LEDs are provided for mapping output of FPGA or tracking particular stage in the design. A

series current limiting resistor of 270 ohm is associated with every LED. To turn on an individual LED,

drive the associated FPGA control signal High.

PROCEDURE:

1.Create a new project & create a new Verilog file.

2.Type the program for testing LEDs and Switches and Save it

3.Synthesize the program and view the RTL Model.

4.Create test bench waveform and simulate it.

5.Download the program using the procedure given below into the FPGA.

6.Now test the physical working of the switches and the LED’s on – board.

11 Prepared By Mr.S.BALABASKER,AP/ECE

DOWNLOADING PROCEDURE:

1. Select “Synthesis/Implementation” in the source window.

2. Select the created module (*.v file) in the source window.

3. Select “user constraint” in the process window, double click “edit constraint” to create user

constraint file (*.UCF).

4. Type the net list to define the I/O pins and save it.

5. Double click “implement design” in the process window.

6. Double click “Generate programming “file and select the respective created bit file (*.bit)

7. Double click “ configure device (iMPACT) ”. In the impact window that appears, select

‘configure device using boundary scan’. Click finish

8. Right click on the created Xilinx model & select ‘program’, give OK on the displayed window.

PROGRAM:

module leds(a, b);

 input [0:15]a;

 output [0:15]b;

 reg [0:15]b;

always@(a)begin

 b=~a;

 end

endmodule

12 Prepared By Mr.S.BALABASKER,AP/ECE

RESULT:

13 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
SIMULATION OF BASIC LOGIC GATES

DATE:

AIM:

To write a verilog program for basic logic gates to synthesize and simulate using Xilinx software

tool.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY:

AND GATE:

An AND gate is a digital logic gate with two or more inputs and one output that performs logical

conjunction. The output of an AND gate is true only when all of the inputs are true. If one or more of an

AND gate's inputs are false, then the output of the AND gate is false.

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = a & b

 A B

OR GATE:

An OR gate is a digital logic gate with two or more inputs and one output that performs logical

disjunction. The output of an OR gate is true when one or more of its inputs are true. If all of an OR gate's

inputs are false, then the output of the OR gate is false

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = a | b

 A B

14 Prepared By Mr.S.BALABASKER,AP/ECE

NOT GATE:

A NOT gate, often called an inverter, is a nice digital logic gate to start with because it has only a single

input with simple behavior. A NOT gate performs logical negation on its input. In other words, if the input

is true, then the output will be false. Similarly, a false input results in a true output.

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = ~a

 A

NAND GATE:

A NAND gate (sometimes referred to by its extended name, Negated AND gate) is a digital logic gate with

two or more inputs and one output with behavior that is the opposite of an AND gate. The output of a

NAND gate is true when one or more, but not all, of its inputs are false. If all of a NAND gate's inputs are

true, then the output of the NAND gate is false.

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = ~(a & b)

 A B

NOR GATE:

A NOR gate (sometimes referred to by its extended name, Negated OR gate) is a digital logic gate with

two or more inputs and one output with behavior that is the opposite of an OR gate. The output of a NOR

gate is true all of its inputs arefalse. If one or more of a NOR gate's inputs are true, then the output of the

NOR gate is false.

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = ~(a | b)

 A B

15 Prepared By Mr.S.BALABASKER,AP/ECE

EX-OR GATE (XOR):

An XOR gate (sometimes referred to by its extended name, Exclusive OR gate) is a digital logic gate with

two or more inputs and one output that performs exclusive disjunction. The output of an XOR gate is true

only when exactly one of its inputs is true. If both of an XOR gate's inputs are false, or if both of its inputs

are true, then the output of the XOR gate is false.

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = a ^ b

 A B

EX-NOR GATE (XNOR):

An XNOR gate (sometimes referred to by its extended name, Exclusive NOR gate) is a digital logic gate

with two or more inputs and one output that performs logical equality. The output of an XNOR gate is true

when all of its inputs are true or when all of its inputs are false. If some of its inputs are true and others are

false, then the output of the XNOR gate is false.

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = ~(a ^ b)

 A B

BUFFER GATE:

A buffer has only a single input and a single output with behavior that is the opposite of an NOT gate. It

simply passes its input, unchanged, to its output. In a boolean logic simulator, a buffer is mainly used to

increase propagation delay. In a real-world circuit, a buffer can be used to amplify a signal if its current is

too weak.

EQUATION LOGIC SYMBOL TRUTH TABLE

Y = A

A

16 Prepared By Mr.S.BALABASKER,AP/ECE

PROCEDURE:

Software part

1. Click on the Xilinx ISE Design Suite 12.1or Xilinx Project navigator icon on the desktop of PC.

2. Write the Verilog code by choosing HDL as top level source module.

3. Check syntax, view RTL schematic and note the device utilization summary by double clicking on the

synthesis in the process window.

4. Perform the functional simulation using Xilinx ISE simulator.

5. The output can be observed by using ISIM Simulator.

17 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

BASIC GATES:

DATAFLOW BEHAVIORAL STRUCTURAL

NOT GATE

module notgate(a,y);

input a;

output y;

assign y= ~a;

endmodule

 module notgate (a,y);

input a;

output y;

reg y;

always @(a)

begin

y=~a;

end

endmodule

module notgate (a,y)

input a;

output y;

inv a1(y,a);

endmodule

OR GATE

module orgate(a,b,y);

inpput a,b;

output y;

assign y=(a|b);

endmodule

 module orgate(a,b,y);

input a,b;

output y;

reg y;

always @(a,b)

begin

y=a|b;

end

endmodule

module orgate(a,b,y);

input a,b;

output y;

or a1(y,a,b);

endmodule

AND GATE

module andgate(a,b,y);

input a,b;

output y;

assign y=(a&b);

endmodule

module andgate(a,b,y);

input a,b;

output y;

reg y;

always @(a,b)

begin

y=a&b;

end

endmodule

module andgate(a,b,y);

input a,b;

output y;

and a1(y,a,b);

endmodule

18 Prepared By Mr.S.BALABASKER,AP/ECE

NOR GATE

module norgate(a,b,y);

inpput a,b;

output y;

assign y=~(a|b);

endmodule

 module norgate(a,b,y);

input a,b;

output y;

reg y;

always @(a,b)

begin

y=~(a|b);

end

endmodule

module norgate(a,b,y);

input a,b;

output y;

nor a1(y,a,b);

endmodule

NAND Gate

module nandgate(a,b,y);

input a,b;

output y;

assign y=~(a&b);

endmodule

module nandgate(a,b,y);

input a,b;

output y;

reg y;

always @(a,b)

begin

y=~(a&b);

end

endmodule

module nandgate(a,b,y);

input a,b;

output y;

nand a1(y,a,b);

endmodule

XOR Gate

module xorgate(a,b,y);

input a,b;

output y;

assign y=(a^b);

endmodule

module xorgate(a,b,y);

input a,b;

output y;

reg y;

always @(a,b)

begin

y=a^b;

end

endmodule

module xorgate(a,b,y);

input a,b;

output y;

xor a1(y,a,b);

endmodule

XNOR GATE

module xnorgate(a,b,y);

input a,b;

output y;

assign y=(~(a^b));

endmodule

module xnorgate(a,b,y);

input a,b;

output y;

reg y;

always @(a,b)

module xnorgate(a,b,y);

input a,b;

output y;

xnor a1(y,a,b);

endmodule

19 Prepared By Mr.S.BALABASKER,AP/ECE

 begin

y=~(a^b);

end

endmodule

BUFFER GATE

module bufgate (a,y);

input a;

output y;

assign y= a;

endmodule

 module bufgate (a,y);

input a;

output y;

reg y;

always @(a)

begin

y=a;

end

endmodule

module bufgate (a,y);

input a;

output y;

buf(y,a);

endmodule

BASIC GATES (ALL GATES IN ONE PROGRAM)

module gates(a,b,c,d,e,f,g,h,i,j);

input a,b;

output c,d,e,f,g,h,i,j;

assign c=a&b;

assign d=a|b;

assign e=~a;

assign f=a;

assign g=~(a|b);

assign h=a^b;

assign i=~(a^b);

assign j=~(a&b);

endmodule

module gates(a,b,c,d,e,f,g,h,i,j);

input a,b;

output c,d,e,f,g,h,i,j;

reg c,d,e,f,g,h,i,j;

always @(a,b)

begin

c=a&b;

d=a|b;

e=~a;

f=a;

g=~(a|b);

h=a^b;

i=~(a^b);

j=~(a&b);

end

endmodule

module gates(a,b,c,d,e,f,g,h,i,j);

input a,b;

output c,d,e,f,g,h,i,j;

and (c,a,b);

or(d,a,b);

not(e,a);

buf(f,a);

nor(g,a,b);

xor(h,a,b);

xnor(i,a,b);

nand(j,a,b);

endmodule

20 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT

RESULT:

21 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
SIMULATION OF HALF ADDER AND FULL ADDER

DATE:

AIM:

To write a verilog program for half adder and full adder to synthesize and simulate using Xilinx software

tool.

TOOLS REQUIRED:

SOFTWARE:

1. Xilinx ISE Design Suite 12.1

THEORY:

HALF ADDER:

The half adder consists of two input variables designated as Augends and Addend bits. Output variables

produce the Sum and Carry. The ‘carry’ output is 1 only when both inputs are 1 and ,sum’ is 1 if any one

input is 1. The Boolean expression is given by,

sum = a^ b

carry = a & b

FULL ADDER:

A Full adder is a combinational circuit that focuses the arithmetic sum of three bits. It consists of 3 inputs

and 2 outputs. The third input is the carry from the previous Lower Significant Position. The two outputs

are designated as Sum (S) and Carry (C). The binary variable S gives the value of the LSB of the Sum. The

output S=1 only if odd number of 1’s are present in the input and the output C=1 if two or three inputs are

1.

sum = a ^ b ^ c

carry= (a & b) | (b & c) | (a & c)

22 Prepared By Mr.S.BALABASKER,AP/ECE

PROCEDURE:

Software part

1. Click on the Xilinx ISE Design Suite 12.1or Xilinx Project navigator icon on the desktop of

PC.

2. Write the Verilog code by choosing HDL as top level source module.

3. Check syntax, view RTL schematic and note the device utilization summary by double

clicking on the synthesis in the process window.

4. Perform the functional simulation using Xilinx ISE simulator.

5. The output can be observed by using ISIM Simulator.

23 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

HALF ADDER

 LOGIC DIAGRAM:

TRUTH TABLE:

INPUTS OUTPUTS

A B SUM CARRY

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

PROGRAM:

DATA FLOW STRUCTURAL BEHAVIOURAL

module halfadder(a,b,sum,carry);

input a,b;

output sum,carry;

assign sum = a ^ b ;

assign carry = (a&b);

endmodule

module halfadder(a,b,sum,carry);

input a,b;

output sum,carry;

reg sum,carry;

always @(a,b)

begin

sum=a^b;

carry=(a&b);

end

endmodule

module halfadder(a,b,sum,carry);

input a,b;

output sum,carry;

xor(sum,a,b);

and(carry,a,b);

endmodule

24 Prepared By Mr.S.BALABASKER,AP/ECE

FULL ADDER

LOGIC DIAGRAM:

TRUTH TABLE:

A B C SUM CARRY

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

25 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

DATAFLOW MODELLING:

module full_adder (a,b,c,sum,carry);

output sum,carry ;

input a,b,c ;

assign sum = a ^ b ^ c;

assign carry = (a&b) | (b&c) | (c&a);

endmodule

BEHAVIORAL MODELLING:

module full_adder (a,b,c,sum,carry);

input a,b,c;

output sum,carry;

reg sum,carry;

always @(a,b,c)

begin

sum=a^b^c;

carry=(a&b)|(b&c)|(c&a);

end

endmodule

STRUCURAL MODELLING:

module full_adder(sum,carry,a,b,c);

input a,b,c;

output sum,carry;

wire w1,w2,w3;

xor x1(w1,a,b);

xor x2(sum,w1,c);

and a1(w2,a,b);

and a2(w3,w1,c);

or(carry,w2,w3);

endmodule

26 Prepared By Mr.S.BALABASKER,AP/ECE

FULL ADDER USING HALF ADDER

module half_adder(a,b,sum,carry);

input a,b;

output sum,carry;

xor(sum,a,b);

and(carry,a,b);

endmodule

module full_adder(a,b,c,sum,carry);

input a,b,c;

output sum,carry;

wire w1,w2,w3;

half_adder ha1(a,b,w1,w2);

half_adder ha2(c,w1,sum,w3);

or(carry,w2,w3);

endmodule

27 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT

28 Prepared By Mr.S.BALABASKER,AP/ECE

RESULT:

29 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
SIMULATION OF ADDER

DATE:

AIM:

To write a Verilog program for Adder and to synthesize, simulate it using Xilinx software tool.

.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY :

When you add large numbers carefully together the addition is done digit by digit. In the illustration, two 8

–digit binary numbers are being added. The top row contains the first number and the second row the

other. Working from the right-hand side, there can be no 'carry' to add to the sum of the first two digits, so

a half adder is sufficient. But for the second and subsequent pairs of digits, full adders must be use (any

carry' is indicated by a f below the adder). The output will be an 8-bit and if the carry is formed that will be

shown in cout output value.

30 Prepared By Mr.S.BALABASKER,AP/ECE

PROCEDURE:

Software part

1. Click on the Xilinx ISE Design Suite 12.1or Xilinx Project navigator icon on the desktop of PC.

2. Write the Verilog code by choosing HDL as top level source module.

3. Check syntax, view RTL schematic and note the device utilization summary by double

4. Clicking on the synthesis in the process window.

5. Perform the functional simulation using Xilinx ISE simulator.

6. The output can be observed by using ISIM Simulator.

31 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

8-BIT RIPPLE CARRY ADDER:

module half_adder(a,b,sum,carry);

input a,b;

output sum,carry;

xor(sum,a,b);

and(carry,a,b);

endmodule

module full_adder(a,b,c,sum,carry);

input a,b,c;

output sum,carry;

wire w1,w2,w3;

half_adder ha1(a,b,w1,w2);

half_adder ha2(c,w1,sum,w3);

or(carry,w2,w3);

endmodule

module rippleadder(a, b, cin, sum, cout);

input [7:0] a,b;

input cin;

output [7:0]sum;

output cout;

wire[6:0] c;

full_adder a1(a[0],b[0],cin,sum[0],c[0]);

full_adder a2(a[1],b[1],c[0],sum[1],c[1]);

full_adder a3(a[2],b[2],c[1],sum[2],c[2]);

full_adder a4(a[3],b[3],c[2],sum[3],c[3]);

full_adder a5(a[4],b[4],c[3],sum[4],c[4]);

full_adder a6(a[5],b[5],c[4],sum[5],c[5]);

full_adder a7(a[6],b[6],c[5],sum[6],c[6]);

full_adder a8(a[7],b[7],c[6],sum[7],cout);

endmodule

32 Prepared By Mr.S.BALABASKER,AP/ECE

4-BIT RIPPLE CARRY ADDER

module half_adder(a,b,sum,carry);

input a,b;

output sum,carry;

xor(sum,a,b);

and(carry,a,b);

endmodule

module full_adder(a,b,c,sum,carry);

input a,b,c;

output sum,carry;

wire w1,w2,w3;

half_adder ha1(a,b,w1,w2);

half_adder ha2(c,w1,sum,w3);

or(carry,w2,w3);

endmodule

module rippleadder (a, b, cin, sum, cout);

input [3:0]a,b;

input cin;

output [3:0]sum;

output cout;

wire[2:0] c;

full_adder a1(a[0],b[0],cin,sum[0],c[0]);

full_adder a2(a[1],b[1],c[0],sum[1],c[1]);

full_adder a3(a[2],b[2],c[1],sum[2],c[2]);

full_adder a4(a[3],b[3],c[2],sum[3],cout);

endmodule

33 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT:

34 Prepared By Mr.S.BALABASKER,AP/ECE

RESULT:

35 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
SIMULATION OF MULTIPLIER

DATE:

AIM:

To write a Verilog program for 4-bit multiplier and to synthesize, simulate it using Xilinx software

tool.

TOOLS REQUIRED:

SOFTWARE:

1. Xilinx ISE Design Suite 12.1

THEORY:

Multiplication of two elements in the polynomial basis can be accomplished in the normal way of

multiplication, but there are a number of ways to speed up multiplication, especially in hardware. In this

type the multiplication can done parallel counter and it is generate carry. The multiplication is independent

of the carry so we can perform N number of multiplication independent of carry.

36 Prepared By Mr.S.BALABASKER,AP/ECE

PROCEDURE:

Software part

1. Click on the Xilinx ISE Design Suite 12.1or Xilinx Project navigator icon on the desktop of PC.

2. Write the Verilog code by choosing HDL as top level source module.

3. Check syntax, view RTL schematic and note the device utilization summary by double

4. Clicking on the synthesis in the process window.

5. Perform the functional simulation using Xilinx ISE simulator.

6. The output can be observed by using ISIM Simulator.

37 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

4-BIT ARRAY MULTIPLIER:

 a3 a2 a1 a0

 X b3 b2 b1 b0

 __

 a3b0 a2b0 a1b0 a0b0

 a3b1 a2b1 a1b1 a0b1

 a3b2 a2b2 a1b2 a0b2

 a3b3 a2b3 a1b3 a0b3

__

 m7 m6 m5 m4 m3 m2 m1 m0

__

a0b0=p0

a1b0=p1

a2b0=p3

a3b0=p6

a0b1=p2

a1b1=p4

a2b1=p7

a3b1=p10

a0b2=p5

a1b2=p8

a2b2=p11

a3b2=p13

a0b3=p9

a1b3=p12

a2b3=p14

a3b3=p15

c11 c9 c6

 c10 c8 c5 c3 HA3 FA5 FA8

 c12 s12 s11 s9 s6

s10 s8 p9 s5 s3

 s7 s4 s2 s1

 c7 c4 c2 c1

 P15 p14 p13 p12 p11 p10 p8 p7 p6 p5 p4 p3 p2 p1 p0

HA1 FA2 FA4 FA7

FA10

HA6 HA9 FA11 FA12

m7 m6 m5 m4 m3 m2 m1 m0

38 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

module half_adder(a,b,sum,carry);

input a,b;

output sum,carry;

xor(sum,a,b);

and(carry,a,b);

endmodule

module full_adder(a,b,c,sum,carry);

input a,b,c;

output sum,carry;

wire w1,w2,w3;

half_adder ha1(a,b,w1,w2);

half_adder ha2(c,w1,sum,w3);

or(carry,w2,w3);

endmodule

module arraymultiplier(m,a,b);

input [3:0]a,b;

output [7:0]m;

wire [15:0]p;

wire [12:1]s,c;

and(p[0],a[0],b[0]);

and(p[1],a[1],b[0]);

and(p[2],a[0],b[1]);

and(p[3],a[2],b[0]);

and(p[4],a[1],b[1]);

and(p[5],a[0],b[2]);

and(p[6],a[3],b[0]);

and(p[7],a[2],b[1]);

and(p[8],a[1],b[2]);

and(p[9],a[0],b[3]);

and(p[10],a[3],b[1]);

and(p[11],a[2],b[2]);

39 Prepared By Mr.S.BALABASKER,AP/ECE

and(p[12],a[1],b[3]);

and(p[13],a[3],b[2]);

and(p[14],a[2],b[3]);

and(p[15],a[3],b[3]);

half_adder ha1(s[1],c[1],p[1],p[2]);

full_adder fa2(s[2],c[2],p[4],p[3],p[5]);

half_adder ha3(s[3],c[3],s[2],c[1]);

full_adder fa4(s[4],c[4],p[6],p[7],p[8]);

full_adder fa5(s[5],c[5],s[4],c[2],c[3]);

half_adder ha6(s[6],c[6],s[5],p[9]);

full_adder fa7(s[7],c[7],p[10],p[11],p[12]);

full_adder fa8(s[8],c[8],c[5],c[4],s[7]);

half_adder ha9(s[9],c[9],s[8],c[6]);

full_adder fa10(s[10],c[10],p[14],p[13],c[7]);

full_adder fa11(s[11],c[11],c[9],c[8],s[10]);

full_adder fa12(s[12],c[12],p[15],c[10],c[11]);

buf(m[0],p[0]);

buf(m[1],s[1]);

buf(m[2],s[3]);

buf(m[3],s[6]);

buf(m[4],s[9]);

buf(m[5],s[11]);

buf(m[6],s[12]);

buf(m[7],c[12]);

endmodule

4-BIT MULTIPLIER

module adder(a,b, out);

input [3:0]a,b;

output [7:0]out;

assign out= a*b;

endmodule

40 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT:

RESULT:

41 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
SIMULATION OF FLIP FLOPS

DATE:

AIM:

To write a Verilog program for various flip flops and to synthesize, simulate it using Xilinx

software tool.

TOOLS REQUIRED:

SOFTWARE:

1. Xilinx ISE Design Suite 12.1

THEORY:

D-FLIP FLOP:

It has only a single data input. That data input is connected to the S input of RS-flip flop, while the inverse

of D is connected to the R input. This prevents that the input combination ever occurs. To allow the flip

flop to be in holding state, a D-flip flop has a second input called “clock”. The clock input is AND-ed with

the D input, such that when clock=0, the R and S inputs of the RS-flip flop are 0 and the state is held.

D-LATCH:

It has only a single data input. That data input is connected to the S input of RS-flip flop, while the inverse

of D is connected to the R input. This prevents that the input combination ever occurs. To allow the flip

flop to be in holding state, a D-flip flop has a second input called “enable”. The enable input is AND-ed

with the D input, such that when enable=0, the R and S inputs of the RS-flip flop are 0 and the state is

held.

42 Prepared By Mr.S.BALABASKER,AP/ECE

PROCEDURE:

Software part:

1. Click on the Xilinx ISE Design Suite 12.1or Xilinx Project navigator icon on the desktop of PC.

2. Write the Verilog code by choosing HDL as top level source module.

3. Check syntax, view RTL schematic and note the device utilization summary by double clicking on the

synthesis in the process window.

4. Perform the functional simulation using Xilinx ISE simulator.

5. The output can be observed by using ISIM Simulator.

43 Prepared By Mr.S.BALABASKER,AP/ECE

JK FLIP FLOP:

TRUTH TABLE

Q J K Qbar

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

module JK_Flip_Flop (Q,Qbar,clk,reset,J,K);

output Q,Qbar;

input clk, reset,J,K;

reg Q, Qbar;

always @(posedge clk)

if (reset)

 begin

 Q <= 0;

 end

else if (J == 0 && K == 0)

 begin

 Qbar <= Q;

 end

else if (J == 0 && K == 1)

 begin

 Qbar <= 0;

 end

else if (J == 1 && K == 0)

 begin

 Qbar <= 1;

 end

else if (J == 1 && K == 1)

 begin

 Qbar <= Q;

 end

endmodule

J Q

clk

K Qbar

 reset

44 Prepared By Mr.S.BALABASKER,AP/ECE

SR FLIP FLOP:

TRUTH TABLE

Q S R Qbar

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 X

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 X

module SR_Flip_Flop (Q,Qbar,clk,reset,S,R);

output Q,Qbar;

input clk, reset,S,R;

reg Q,Qbar;

always @(posedge clk)

if (reset)

 begin

 Q <= 0;

 end

else if (S == 0 && R == 0)

 begin

 Qbar <= Q;

 end

else if (S == 0 && R == 1)

 begin

 Qbar <= 0;

 end

else if (S == 1 && R == 0)

 begin

 Qbar <= 1;

 end

else if (S == 1 && R == 1)

 begin

 Qbar <= 1'bx;

 end

endmodule

S Q

clk

R Qbar

 reset

45 Prepared By Mr.S.BALABASKER,AP/ECE

D FLIP FLOP:

TRUTH TABLE

Q D Qbar

0 0 0

0 1 1

1 0 0

1 1 1

module D_Flip_Flop (Q,Qbar,clk,reset,D);

input clk,reset,D;

output Q,Qbar;

reg Q,Qbar;

always @(posedge clk)

if (reset)

 begin

 Q <= 0;

 end

else

 begin

 Qbar <= D;

 end

endmodule

D Q

clk

reset Qbar

46 Prepared By Mr.S.BALABASKER,AP/ECE

T FLIP FLOP:

TRUTH TABLE

Q T Qbar

0 0 0

0 1 1

1 0 1

1 1 0

module T_Flip_Flop (Q,Qbar,clk,reset,t);

input clk,reset,t;

output Q, Qbar;

reg Q, Qbar;

always @(posedge clk)

if (reset)

begin

Q <= 0;

end

else

 if (t == 0)

begin

Qbar <= Q;

end

else

 if (t == 1)

begin

Qbar <= ~Q;

end

endmodule

T Q

clk

reset Qbar

47 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT:

48 Prepared By Mr.S.BALABASKER,AP/ECE

RESULT:

49 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
SIMULATION OF UP-DOWN COUNTER

DATE:

AIM:

To write a verilog program for Up-Down Counter and to synthesize, simulate it using Xilinx

software tool.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY :

UP-DOWN COUNTER:

A counter that can change state in either direction, under the control of an up or down selector input, is

known as an up/down counter. When the selector is in the up state, the counter increments its value. When

the selector is in the down state, the counter decrements the count. Likewise the counter counts in both the

directions continuously until attaining the end of the count. The count is initiated by the positive clock

pulse. The counter counts from 0000 to 1111 for up count and 1111 to 0000 for down count.

50 Prepared By Mr.S.BALABASKER,AP/ECE

PROCEDURE:

Software part

1. Click on the Xilinx ISE Design Suite 12.1or Xilinx Project navigator icon on the desktop of PC.

2. Write the Verilog code by choosing HDL as top level source module.

3. Check syntax, view RTL schematic and note the device utilization summary by double Clicking on the

synthesis in the process window.

4. Perform the functional simulation using Xilinx ISE simulator.

5. The output can be observed by using ISIM Simulator.

51 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

UP

COUNTER
DECIMAL

VALUE

PRESENT STATE
DOWN

COUNTER

 8 4 2 1

q[3] q[2] q[1] q[0]

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

0 0 0 0 0

4-BIT UP COUNTER

module counter (clk,clr,q);

 input clk,clr;

 output [3:0]q;

 reg [3:0]q;

 always @(posedge clk)

 begin

 if (clr)

 q<=4'b0000;

 else

 q<=q + 1'b1;

 end

 endmodule

4-BIT DOWN COUNTER

module counter (clk,clr,q);

 input clk,clr;

 output [3:0]q;

 reg [3:0]q;

 always @(posedge clk)

 begin

 if (clr)

 q<=4'b0000;

 else

 q<=q - 1'b1;

 end

 endmodule

52 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT:

53 Prepared By Mr.S.BALABASKER,AP/ECE

4-BIT UP-DOWN COUNTER:

module updowncounterm(clk,clr,updown,q);

input clk,clr;

input updown;

output [3:0]q;

reg [3:0]q;

always@(posedge clk)

begin

if(clr)

 q <=4'b0000;

else if(updown)

 q <= q+1'b1;

else

 q <= q-1'b1;

end

endmodule

54 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT:

RESULT:

55 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:

SIMULATION OF COUNTER
DATE:

AIM:

To write a Verilog program for different Counters and to synthesize, simulate it using Xilinx

software tool.

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY:

MOD 10 COUNTERS:

JOHNSON COUNTER:

Johnson Counter is one kind of Ring Counter. It is also known as Twisted Ring Counter. A 4-bit Johnson

Counter passes blocks of four logic "0" and then passes four logic "1". So it will produce 8-bit pattern. For

example, "1000" is initial output then it will generate 1100, 1110, 1111, 0111, 0011, 0001, 0000 and this

patterns will repeat so on.

RING COUNTER:

Ring Counter is composed of Shift Registers. The data pattern will recirculate as long as clock pulses are

applied. For example, if we talk about 4-bit Ring Counter, then the data pattern will repeat every four

clock pulses. If pattern is 1000, then it will generate 0100, 0010, 0001, 1000 and so on.

56 Prepared By Mr.S.BALABASKER,AP/ECE

PROCEDURE:

Software part

1. Click on the Xilinx ISE Design Suite 12.1or Xilinx Project navigator icon on the desktop of PC.

2. Write the Verilog code by choosing HDL as top level source module.

3. Check syntax, view RTL schematic and note the device utilization summary by double clicking on the

synthesis in the process window.

4. Perform the functional simulation using Xilinx ISE simulator.

5. The output can be observed by using ISIM Simulator.

57 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

MOD 10 COUNTERS / DECADE COUNTER:

module mod10 (clk,clr,Q);

 input clk,clr;

 output [3:0]Q;

 reg [3:0]Q;

 always @(posedge clk)

 begin

 if (clr | Q==4'b1001)

 Q<=4'b0000;

 else

 Q<=Q + 1'b1;

 end

endmodule

TRUTH TABLE

DECIMAL

VALUE

8 4 2 1

Q[3] Q[2] Q[1] Q[0]

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

0 0 0 0 0

58 Prepared By Mr.S.BALABASKER,AP/ECE

JOHNSON COUNTER

module johnson_count (rst, clk, Q);

input rst, clk;

output [3:0] Q;

reg [3:0] Q;

always @(posedge clk)

if (rst)

 begin

 Q[3:0] <= 0;

 end

else

 Q <= {{Q[2:0]}, {~Q[3]}};

endmodule

TRUTH TABLE

Q[3] Q[2] Q[1] Q[0]

0 0 0 0

0 0 0 1

0 0 1 1

0 1 1 1

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

0 0 0 0

59 Prepared By Mr.S.BALABASKER,AP/ECE

RING COUNTER

module ring_count (rst, clk, Q);

input rst, clk;

output [3:0] Q;

reg [3:0] Q;

always @(posedge clk)

if (rst)

 begin

 Q[3:1] <= 0;

 Q[0] <= 1;

 end

else

 Q <= {{Q[2:0]}, {Q[3]}};

endmodule

TRUTH TABLE

Q[3] Q[2] Q[1] Q[0]

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

60 Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATION REPORT:

RESULT:

61 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:

ANALYSIS AND SIMULATION OF STATE MACHINES
DATE:

AIM:

To analyze, synthesize and simulate state machines using Xilinx simulation tool

TOOLS REQUIRED:

Software:

1. Xilinx ISE Design Suite 12.1

THEORY:

MEALY MODEL:

Analysis describes what a given circuit will do under certain operating conditions. The behavior of a

clocked sequential circuit is determined from the inputs, the outputs, and the state of its flip-flops. The

outputs and the next state are both a function of the inputs and the present state. The analysis of a

sequential circuit consists of obtaining a table or a diagram for the time sequence of inputs, outputs, and

internal states. It is also possible to write Boolean expressions that describe the behavior of the sequential

circuit. These expressions must include the necessary time sequence, either directly or indirectly. A logic

diagram is recognized as a clocked sequential circuit if it includes flip-flops with clock inputs. The flip-

flops may be of any type, and the logic diagram may or may not include combinational logic gates.

State Equations: The behavior of a clocked sequential circuit can be described algebraically by means of

state equations. A state equation (also called a transition equation) specifies the next state as a function of

the present state and inputs. Consider the sequential circuit shown in Fig. 1. It acts as a 0-detector by

asserting its output when a 0 is detected in a stream of 1s.

A(t + 1) = A(t)x(t) + B(t)x(t) ; B(t + 1) = A’(t)x(t); y(t) = [A(t) + B(t)]x’(t)

A state equation is an algebraic expression that specifies the condition for a flip-flop state transition. The

left side of the equation, with (t + 1), denotes the next state of the flip-flop one clock edge later. The right

side of the equation is a Boolean expression that specifies the present state and input conditions that make

the next state equal to 1. Since all the variables in the Boolean expressions are a function of the present

state, we can omit the designation (t) after each variable for convenience and can express the state

equations in the more compact form

A(t + 1) =Ax + Bx ; B(t + 1) =A’x ; y = Ax’+ Bx’

62 Prepared By Mr.S.BALABASKER,AP/ECE

LOGIC DIAGRAM:

STATE TABLE:

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (sometimes

called a transition table). The table consists of four sections labeled present state, input, next state, and

output . The present-state section shows the states of flip-flops A and B at any given time t. The input

section gives a value of x for each possible present state. The next-state section shows the states of the flip-

flops one clock cycle later, at time t + 1. The output section gives the value of y at time t for each present

state and input condition. State table for the above Circuit diagram

Present

State
Input Next State Output

A B x A B y

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 1 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 1 0 0

63 Prepared By Mr.S.BALABASKER,AP/ECE

STATE DIAGRAM:

The information available in a state table can be represented graphically in the form of a state

diagram. In this type of diagram, a state is represented by a circle, and the (clock-triggered) transitions

between states are indicated by directed lines connecting the circles. The state diagram provides the same

information as the state table and is obtained directly from Table. The binary number inside each circle

identifies the state of the flip-flops. The directed lines are labeled with two binary numbers separated by a

slash. The input value during the present state is labeled first, and the number after the slash gives the

output during the present state with the given input. A directed line connecting a circle with itself indicates

that no change of state occurs.

PROGRAM:

MEALY MODEL:

module Mealy_model(y, x, clk, reset);

input x,clk,reset;

output reg y;

reg [1:0] state, next_state;

parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

always @ (posedge clk)

if (reset == 0) state <= S0;

else state <= next_state;

always @ (state, x)

case (state)

S0: if (x) next_state = S1; else next_state = S0;

S1: if (x) next_state = S3; else next_state = S0;

64 Prepared By Mr.S.BALABASKER,AP/ECE

S2: if (x) next_state = S2; else next_state = S0;

S3: if (x) next_state = S2; else next_state = S0;

endcase

always @ (state, x)

case (state)

S0: y = 0;

S1, S2, S3: y = ~x;

endcase

endmodule

65 Prepared By Mr.S.BALABASKER,AP/ECE

MOORE MODEL:

LOGIC DIAGRAM:

STATE TABLE:

The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table (sometimes

called a transition table). The table consists of four sections labeled present state, input, next state, and

output . The present-state section shows the states of flip-flops A and B at any given time t. The input

section gives a value of x for each possible present state. The next-state section shows the states of the flip-

flops one clock cycle later, at time t + 1. The output section gives the value of y at time t for each present

state and input condition.

Present State Input Next State Flip- Flop Inputs

A B x A B JA KA JB KB

0 0 0 0 1 0 0 1 0

0 0 1 0 0 0 0 0 1

0 1 0 1 1 1 1 1 0

0 1 1 1 0 1 0 0 1

1 0 0 1 1 0 0 1 1

1 0 1 1 0 0 0 0 0

1 1 0 0 0 1 1 1 1

1 1 1 1 1 1 0 0 0

66 Prepared By Mr.S.BALABASKER,AP/ECE

STATE EQUATIONS:

A(t+1) = JA’ + K’A

B(t+1) = JB’ + K’B

A(t+1) = BA’ + (Bx’)’A = A’B+AB’+Ax

B(t+1) = x’B’ + (A x)’B = B’x’ + ABx + A’Bx’

STATE DIAGRAM:

MOORE MODEL:

module Moore_Model(y, x, clk, reset);

input x,clk,reset;

output [1:0]y;

reg [1:0] state;

parameter S0 = 2'b00, S1 = 2'b01, S2 = 2'b10, S3 = 2'b11;

always @ (posedge clk)

if (reset == 0) state <= S0;

else case (state)

S0: if (x) state <= S0; else state <= S1;

S1: if (x) state <= S2; else state <= S3;

S2: if (x) state <= S2; else state <= S3;

S3: if (x) state <= S3; else state <= S0;

endcase

assign y=state;

endmodule

67 Prepared By Mr.S.BALABASKER,AP/ECE

68 Prepared By Mr.S.BALABASKER,AP/ECE

RESULT:

69 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO: FPGA IMPLEMENTATION OF COUNTER AND TESTING

USING CHIP SCOPE PRO DATE:

AIM:

To implement a 4 bit ripple counter using FPGA and test it using Chip Scope Pro feature tool.

TOOLS REQUIRED:

Software:

2. Xilinx ISE Design Suite 12.1

THEORY:

Follow the down loading procedure given in Expt. 3(a) to configure the FPGA device for the 4 bit ripple

counter given in Expt. 1(c) and verify its working using Chip Scope Pro feature. The procedure for

verification using Chip Scope Pro is outlined below:

CHIP SCOPE PRO:

Xilinx provides Chip Scope Pro software to view hardware simulation (to view the current status of the

hardware signals in a FPGA board). We can run the Chip Scope Pro for current project and also configure

the FPGA through Chip Scope Pro. An FPGA may get inputs from the outside environment like switches

or binary signals from external hardware and the Project output is changed depending on the input. When

we change the input in hardware we get the output changes in hardware which is also updated in Chip

Scope Pro simulation window. Thus we can view the real time changes of hardware signals in software.

Refer Xilinx website to know more details about Chip Scope Pro.

Working procedure of Chip Scope Pro is given in the following section. Counter function is taken as an

example to view the hardware simulation. Create a new project file and give the Verilog Coding, UCF file.

Save the files and select New Source from Project menu. New Source Wizard window will open, here

select Chip Scope Definition and Connection File. Give the file name and file location to store the file then

click ‘Next’ and ‘Finish.

CONFIGURING THE LOGIC ANALYZER CORE:

In order to test the counter design we have to configure and insert the logic analyzer core in our design.

Follow these steps:

1. In the ‘Sources” view right click on the top module (counter.v) and select ‘New Source’

70 Prepared By Mr.S.BALABASKER,AP/ECE

2. In the ‘New Source Wizard’ window, select ‘Chipscope Definition and Connection File’ and

specify the filename as ‘counter_db’. Click ‘Next’ and then click ‘Finish’.

3. Note that ‘counter_debug.cdc’ file has been added to your ‘Sources’ list and is listed below the

selected top module (counter).

71 Prepared By Mr.S.BALABASKER,AP/ECE

4. Double click on ‘debug.cdc’ to launch the ChipScope Pro Core Inserter application. This

application will integrate the logic analyzer core into our counter design. Do not alter any settings

on the first screen. Click ‘Next’.

5. To observe any signal, we have to specify the trigger. Logic analyzer core will start capturing the

desired signal upon activation of trigger signal. In this example we want to monitor the counter’s

counting action as soon as ‘rst’ signal is deactivated. So we will create two trigger ports. One port will

be ‘rst’ signal and another port will be counter’s eight least significant bits.

Set ‘Number of trigger ports’ to 2.

In ‘TRIG0’ frame set ‘Trigger Width’ as 1 (since ‘rst’ is one bit signal).

In ‘TRIG1’ frame set ‘Trigger Width’ as 8 (as we want to observe counter’s 8 least significant bits).

Click Next.

72 Prepared By Mr.S.BALABASKER,AP/ECE

6. Now in this window we will specify capture parameters. We want to use our trigger ports as data ports

which will be recorded by logic analyzer. We also want to sample data on rising clock edge.

In ‘Sample On’ list select ‘Rising’.

Set Number of samples to be recorded by changing ‘Data Depth’ to 1024 samples. This will record

1024 samples from the trigger event. You can at the most record 16K samples.

Select both check boxes in ‘Trigger Ports Used As Data’ frame.

Click Next.

7. Now we will specify which signal(s) to be used as Clock and Trigger. Click on ‘Modify Connections’.

73 Prepared By Mr.S.BALABASKER,AP/ECE

8. Select the ‘Clock signals’ Pane, then select ‘clk_BUFG’ signal from the left hand side list and then

click on ‘Make Connection’. This will add ‘clk’ signal as the clock signal for logic analyzer.

9. Now select ‘Trigger/Data signals’ pane. Select ‘TP0’ and connect ‘rst_IBUF’ signal to CH0

channel.

74 Prepared By Mr.S.BALABASKER,AP/ECE

10. Similarly click on ‘TP1’ pane and add connect counter’s lower eight bits to eight channels. Click

‘OK’ once you finish making connections.

11. Now in the main window click on ‘Return to Project Navigator’. It will ask for saving the project,

click ‘Yes’. Now we are ready to compile the entire counter design along with the logic analyzer core.

75 Prepared By Mr.S.BALABASKER,AP/ECE

12. In the ISE, select top level module ‘counter’ and in the ‘Processes’ pane double click on ‘Analyze

Design Using ChipScope’. This will start the process to synthesize combined unit consisting of design

under test (in this case counter) and the chipscope cores.

DEBUGGING THE DESIGN USING CHIPSCOPE ANALYZER TOOL:

Once the synthesis gets over, ISE will launch the Analyzer tool. Make sure that FPGA board is connected

to PC.

1. Once the analyzer tool is running, click on ‘Initialize JTAG Chain’ icon located at the top right corner of

the window. This will initialize the JTAG chain and identify the devices found in the chain. A dialog box

will appear showing the devices discovered. Click ‘OK’.

76 Prepared By Mr.S.BALABASKER,AP/ECE

2. Now select the FPGA device from the JTAG chain, right click and then select ‘Configure’ to specify the

configuration bit stream file.

3. Select the bit stream file ‘cntr.bit’ from the bit stream folder. Then click ‘OK’.

IMPORTANT:

4. After clicking ‘OK’, tool will load the bit stream file into FPGA and check the availability of debugging

cores. If debugging core is found tool will show ‘INFO: Found 1 Core Unit in the JTAG device Chain.’

Message in status window.

If you see ‘Found 0 Core …’ message instead, then either you have selected wrong bit stream file or

something has gone wrong in one of the previous steps and debugging core has not been inserted

properly into the design.

If everything is fine then you will see options for Logic Analyzer core inserted in our design. Now

double click on the ‘Trigger Setup’ element to launch trigger setup window. And for trigger port 0 (i.e.

‘rst’ signal) specify the trigger Value 0.

77 Prepared By Mr.S.BALABASKER,AP/ECE

5. This will make logic analyzer to trigger as soon as ‘rst’ become zero and record 1024 samples on

successive clock edges. Note that trigger signals are sampled on rising clock edge. Double click on

‘Waveform’ element to see the waveform. 5. Now everything is ready. To apply the settings and ARM

the trigger click on button. After that press the ‘Down’ button on the development board to release the

‘rst’ signal. This will trigger the logic analyzer. Once 1024 samples are recorded, this data will be

78 Prepared By Mr.S.BALABASKER,AP/ECE

transferred to PC and will be displayed in the waveform window.

NOTE: To see the names of the trigger ports, you can import the ‘debug.cdc’ file in analyzer tool. Click on

File>Import and then select ‘counter_debug.cdc’

79 Prepared By Mr.S.BALABASKER,AP/ECE

PROGRAM:

module counter (clk,clr,q);

 input clk,clr;

 output [3:0]q;

 reg [3:0]q;

 always @(posedge clk)

 begin

 if (clr)

 q<=4'b0000;

 else

 q<=q + 1'b1;

 end

 endmodule

NETLIST:

PlanAhead Generated physical constraints

NET "clk" LOC = A8;

NET "clr" LOC = T14;

NET "q[0]" LOC = R1;

NET "q[1]" LOC = R2;

NET "q[2]" LOC = K3;

NET "q[3]" LOC = T4;

80 Prepared By Mr.S.BALABASKER,AP/ECE

RESULT:

81 Prepared By Mr.S.BALABASKER,AP/ECE

TANNER

TOOLS

82 Prepared By Mr.S.BALABASKER,AP/ECE

Introduction to Tanner Tool

Tanner tool is a Spice Computer Analysis Programmed for Analogue Integrated Circuits. Tanner tool

consists of the following Engine Machines:

1. S-EDIT (Schematic Edit)

2. T-EDIT (Simulation Edit)

3. W-EDIT (Waveforms Edit)

4. L-EDIT (Layout Edit)

Using these engine tools, spice program provides facility to the use to design & simulate new ideas in

Analogue Integrated Circuits before going to the time consuming & costly process of chip fabrication.

 SCHEMATIC EDIT TOOL (S-EDIT)

S-Edit is hierarchy of files, modules & pages. It introduces symbol & schematic modes. S-Edit provides the

facility of:

1. Beginning a design.

2. Viewing, drawing & editing of objects.

3. Design connectivity.

4. Properties, net lists & simulation.

5. Instance & browse schematic & symbol mode.

Beginning a design: It explains the design process in detail in terms of file module operation and module.

Browser: Effective schematic design requires a working knowledge of the S-Edit design hierarchy of files &

modules. S-Edit design files consist of modules. A module is a functional unit of design such as a transistor,

a gate and an amplifier.

Modules contain two components:

1) Primitives: Geometrical objects created with drawing tools.

2) Instances: References to other modules in file. The instanced module is the original.

S-Edit has two viewing modes:

1. Schematic Mode: to create or view a schematic, we operate in schematic mode.

2. Symbol Mode: it represents symbol of a larger functional unit such as operational amplifier.

83 Prepared By Mr.S.BALABASKER,AP/ECE

T-SPICE PRO CIRCUIT ANALYSIS

 An introduction to the integrated components of the T- Spice Pro circuit analysis suite:

Schematic data files (.sdb): describes the circuits to be analyzed in graphical form, for display and editing

by S- Edit" Schematic Editor.

 Simulation input files (.sp): describes the circuits to be analyzed in textual form, for editing and simulation

by T- Spice" Circuit Simulator.

Simulation output files (.out): containing the numerical results of the circuit analyses, for manipulation and

display by W- Edit" Waveform Viewer.

 CIRCUIT SIMULATOR (T-SPICE)

T- Spice Pro’s waveform probing feature integrates S- Edit, T- Spice, and W- Edit to allow individual points

in a circuit to be specified and analyzed. A few analysis is described below:

The heart of T-Spice operation is the input file (also known as the circuit description, the net list & the input

deck). This is a plain text file that contains the device statement & simulation commands, drawn from the

SPICE circuit description language with which T-Spice constructs a model of the circuit to be simulated.

Input files can be created and modified with any text editor.

T-Spice is a tool used for simulation of the circuit. It provides the facility of

 1. Design Simulation

 2. Simulation Commands

 3. Device Statements

 4. User-Designed External Models

 5. Small Signal & Noise Models

T-Spice uses Kirchhoff’s Current Law (KCL) to solve circuit problems. To T-Spice, a circuit is a set of

devices attached to nodes. The voltage at all nodes represents the circuit state. T-Spice solves for a set of

node voltage that satisfied KCL (implying that sum of currents flowing into each node is zero). In order to

evaluate whether a set of node voltages is a solution, T-Spice computers and sums all the current flowing

out of each device into nodes connected to it (its terminals). The relationship between the voltages at device

terminals and the currents through the terminal is determined by the device model for a resistor of resistance

R is

84 Prepared By Mr.S.BALABASKER,AP/ECE

 I=∆V/R

 Where, ∆V represents the voltage difference across the device. A few analyses are discussed below:

 DC Operating Point Analysis

DC operating point analysis finds a circuit’s steady- state condition, obtained (in principle) after the input

voltages have been applied for an infinite amount of time. The .include command causes T- Spice to read in

the contents of the model file for the evaluation of NMOS and PMOS transistors.

The technology file assigns values to MOSFET model parameters for both n - and p -type devices. When

read by the input file, these parameters are used to evaluate MOSFET model equations, and the results are

used to construct internal tables of current and charge values. Values read or interpolated from these tables

are used in the computations called for by the simulation. Following each transistor name are the names of

its terminals. The required order of terminal names is: drain -gate -source -bulk. Then the model name

(NMOS or PMOS in this example), and physical characteristics such as length and width, are specified. The

.op command performs a DC operating point calculation and writes the results to the file specified in the

Simulate > Start Simulation dialog. The output file lists the DC operating point information for the circuit

described by the input file.

DC Transfer Analysis

DC transfer analysis is used to study the voltage or current at one set of points in a circuit as a function of

the voltage or current at another set of points. This is done by sweeping the source variables over specified

ranges, and recording the output. A list of sources to be swept, and the voltage ranges across which the

sweeps are to take place follow the .dc command, indicating transfer analysis. The transfer analysis will be

performed as follows: vdd will be set at 5 volts and vin will be swept over its specified range; vdd will then

be incremented and vin will be reswept over its range; and so on, until vdd reaches the upper limit of its

range. The .dc command ignores the values assigned to the voltage sources vdd and vin in the voltage

source statements, but they must still be declared in those statements. The results for nodes in and out are

reported by the .print dc command to the specified destination.

Transient Analysis

Transient analysis provides information on how circuit elements vary with time. The basic T- Spice

command for transient analysis has three modes. In the default mode, the DC operating point is computed,

and T- Spice uses this as the starting point for the transient simulation. The .tran command specifies the

characteristics of the transient analysis to be performed.

 AC Analysis

AC analysis characterizes the circuit’s behavior dependence on small- signal input frequency. It involves

85 Prepared By Mr.S.BALABASKER,AP/ECE

three steps: (1) calculating the DC operating point; (2) linearizing the circuit; and (3) solving the linearized

circuit for each frequency. When ac voltage source is to be applied, then vdiff sets the DC voltage difference

between nodes the two nodes to -0. 0007 volts; its AC magnitude is 1 volt and its AC phase is 180 degrees.

The .ac command performs an AC analysis. Following the .ac keyword is information concerning the

frequencies to be swept during the analysis. In case, the frequency is to be swept logarithmically, by decades

(DEC); 5 data points are to be included per decade is considered to be the standard The two .print

commands write the voltage magnitude (in decibels) and phase (in degrees), respectively, for the node out to

the specified file. The .acmodel command writes the small- signal model parameters and operating point

voltages and currents for all circuit devices

Noise Analysis

 Real circuits, of course, are never immune from small, random fluctuations in voltage and current levels. In

T- Spice, the influence of noise in a circuit can be simulated and reported in conjunction with AC analysis.

The purpose of noise analysis is to compute the effect of the noise associated with various circuit devices on

an output voltage or voltages as a function of frequency. Noise analysis is performed in conjunction with

AC analysis; if the .ac command is missing, then the .noise command is ignored. With the .ac command

present, the .noise command causes noise analysis to be performed at the same frequencies. The .noise

command takes two arguments: the output at which the effects of noise are to be computed, and the input at

which the .noise can be considered to be concentrated for the purposes of estimating the equivalent noise

spectral density. The print command is used to print results.

 WAVEFORM EDIT

The ability to visualize the complex numerical data resulting from VLSI circuit simulation is critical to

testing, understanding & improving these circuits. W-Edit is a waveform viewer that provides ease of use,

power & speed in a flexible environment designed for graphical data representation. The advantages of W-

Edit include:

1. Tight Integration with T-spice, Tanner EDA_s circuit level simulator. W-Edit can chart data generated

by T-spice directly, without modification of the output text data files. The data can also be charted

dynamically as it is produced during the simulation.

 2. Charts can automatically configure for the type of data being presented.

3. A data is treated by W-Edit as a unit called a trace. Multiple traces from different output files can be

viewed simultaneously in single or several windows; traces can be copied and moved between charts &

windows. Trace arithmetic can be performed on existed tracing to create new ones.

86 Prepared By Mr.S.BALABASKER,AP/ECE

4. Chart views can be panned back & forth and zoomed in & out, including specifying the exact X-Y co-

ordinate range.

5. Properties of axes, traces, rides, charts, text & colors can be customized.

Numerical data is input to W-Edit in the form of plain or binary text files. Header & Comment information

supplied by T-Spice is used for automatic chart configuration. Runtime update of results is made possible by

linking W-Edit to a running simulation in T-Spice. W-Edit saves data with chart, trace, axis & environment

settings in files with the WDB (W-Edit Database).

 LAYOUT(L-EDIT)

 It is a tool that represents the masks that are used to fabricate an integrated circuit. It describes a layout

design in terms of files, cells & mask primitives. On the layout level, the component parameters are totally

different from schematic level. So it provides the facility to the user to analyze the response of the circuit

before forwarding it to the time consuming & costly process of fabrication. There are rules for designing

layout diagram of a schematic circuit using which user can compare the output response with the expected

one.

 L- Edit: An Integrated Circuit Layout Tool

In L- Edit, layers are associated with masks used in the fabrication process. Different layers can be

conveniently represented by different colors and patterns. L- Edit describes a layout design in terms of files,

cells, instances, and mask primitives. You may load as many files as desired into memory. A file may be

composed of any number of cells. A file may be composed of any number of cells. These cells may be

hierarchically related, as in a typical design, or they may be independent, as in a library file. Cells may

contain any number or combination of mask primitives and instances of other cells.

 Cells: The Basic Building Blocks

 The basic building block of the integrated circuit design in L- Edit is a cell. Design layout occurs within

cells. A cell can:

 Contain part or all of the entire design.

 Be referenced in other cells as a sub- cell, or instance.

 Be made up entirely of instances of other cells.

 Contain original drawn objects, or primitives.

 Be made up entirely of primitives or a combination of primitives and instances of other cells.

87 Prepared By Mr.S.BALABASKER,AP/ECE

Hierarchy

L- Edit supports fully hierarchical mask design. Cells may contain instances of other cells. An instance is a

reference to a cell; should you edit the instanced cell, the change is reflected in all the instances of that cell.

Instances simplify the process of updating a design, and also reduce data storage requirements, because an

instance does not need to store all the data within the instanced cell instead, only a reference to the

instanced cell is stored, along with information on the position of the instance and on how the instance may

be rotated and mirrored.

L- Edit does not use a “separated” hierarchy: instances and primitives may coexist in the same cell at any

level in the hierarchy. Design files are self- contained. The pointer to a cell contained in an instance always

points to a cell within the same design file. When cells are copied from one file to another, L- Edit

automatically copies across any cells that are instanced by the copied cell, to maintain the self- contained

nature of the destination file.

Design Rules

Manufacturing constraints can be defined in L- Edit as design rules. Layouts can be checked against these

design rules.

Design Features

L- Edit is a full- custom mask editor. Manual layout can be accomplished more quickly because of L Edit’s

intuitive user interface. In addition, one can construct special structures to utilize a technology without,

worrying about problems caused by automatic transformations. Phototransistors, guard bars, vertical and

horizontal bipolar transistors, static structures, and Schottky diodes, for example, are as easy to design in

CMOS- Bulk technology as are conventional MOS transistors.

 Floor plans

 L- Edit is a manual floor planning tool. You have the choice of displaying instances in outline, identified

only by name, or as fully fleshed- out mask geometry. When you display your design in outline, you can

manipulate the arrangement of the cells in your design quickly and easily to achieve the desired floor plan.

One can manipulate instances at any level in the hierarchy, with insides hidden or displayed, using the same

graphical move/ select operations or rotation/ mirror commands that you use on primitive mask geometry.

Memory Limits

In L- Edit, one can make your design files as large as one like, given available RAM and disk space.

Hard Copy

L- Edit provides the capability to print hard copy of the design. A multiage option allows very large plots to

88 Prepared By Mr.S.BALABASKER,AP/ECE

be printed to a specific scale on multiple 8 1/ 2 x 11 inch pages. An L- Edit macro is available to support

large- format, high- resolution, color plotting on inkjet plotters.

Variable Grid

L- Edit’s grid options support lambda- based design as well as micron- based and mil- based design.

Error Recovery

L- Edit’s error- trapping mechanism catches system errors and in most cases provides a means to recover

without losing or damaging data.

 L- Edit Modules

 L- Edit
TM

: a layout editor

 L- Edit ¤ Extract
TM

: a layout extractor

 L- Edit ¤ DRC
TM

: a design rule checker

L- Edit is a full- featured, high-performance, interactive, graphical mask layout editor. L- Edit generates

layouts quickly and easily, supports fully hierarchical designs, and allows an unlimited number of layers,

cells, and levels of hierarchy. It includes all major drawing primitives and supports 90°, 45°, and all- angle

drawing modes.

L- Edit ¤ Extract creates SPICE- compatible circuit netlists from L- Edit layouts. It can recognize active and

passive devices, sub circuits, and the most common device parameters, including resistance, capacitance,

device length, width, and area, and device source and drain area.

 L- Edit ¤ DRC features user- programmable rules and handles minimum width, exact width, minimum

space, minimum surround, non- exist, overlap, and extension rules. It can handle full chip and region- only

DRC. DRC offers Error Browser and Object Browser functions for quickly and easily cycling through rule-

checking errors.

89 Prepared By Mr.S.BALABASKER,AP/ECE

Steps to use Tanner tool:

i.SCHEMATIC (S-edit):

Start the tanner EDA by using the desktop shortcut or by using the

 Start  Programs  tanner EDA tanner tool v13.0 S-edit.

90 Prepared By Mr.S.BALABASKER,AP/ECE

91 Prepared By Mr.S.BALABASKER,AP/ECE

92 Prepared By Mr.S.BALABASKER,AP/ECE

93 Prepared By Mr.S.BALABASKER,AP/ECE

94 Prepared By Mr.S.BALABASKER,AP/ECE

95 Prepared By Mr.S.BALABASKER,AP/ECE

96 Prepared By Mr.S.BALABASKER,AP/ECE

97 Prepared By Mr.S.BALABASKER,AP/ECE

ii) Layout (L-edit):

 Start  Programs  tanner EDA tanner tool v13.0 L-edit

98 Prepared By Mr.S.BALABASKER,AP/ECE

99 Prepared By Mr.S.BALABASKER,AP/ECE

100 Prepared By Mr.S.BALABASKER,AP/ECE

101 Prepared By Mr.S.BALABASKER,AP/ECE

102 Prepared By Mr.S.BALABASKER,AP/ECE

103 Prepared By Mr.S.BALABASKER,AP/ECE

104 Prepared By Mr.S.BALABASKER,AP/ECE

105 Prepared By Mr.S.BALABASKER,AP/ECE

106 Prepared By Mr.S.BALABASKER,AP/ECE

107 Prepared By Mr.S.BALABASKER,AP/ECE

108 Prepared By Mr.S.BALABASKER,AP/ECE

109 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
DIFFERENTIAL AMPLIFER

DATE:

AIM:

 To calculate the gain, bandwidth and CMRR of a differential amplifier through schematic entry
using Tanner EDA tool.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No. SOFTWARE REQUIREMENTS Quantity

1 S-Edit, W-Edit, T-Edit using Tanner Tool. 1

b) Procedure for doing the experiment

S.No Details of the step

1
Draw the schematic of differential amplifier using S-edit and generate the
Symbol.

2
Draw the schematic of differential amplifier circuit using the generated
Symbol.

3 Perform AC Analysis of the differential amplifier.

4 Obtain the frequency response from W-edit.

5 Obtain the spice code using T-edit.

PROCEDURE:

 Enter the schematic of differential amplifier using S-Edit.

 Perform AC Analysis of the differential amplifier.

 Go to ‘setup’ in that select ‘spice simulation’. Choose ‘ac analysis’ and give the following values.

 Set ‘Start frequency =10’,’ Stop frequency=10meg’, ‘No. of frequency=25’, ‘Sweep type = dec’.

Click on ‘general’ type and give path to Generic_250nm.lib.Then Click OK.

 RUN Simulation to get output.

 Obtain the frequency response from W-Edit.

 Obtain the spice code using T-Edit.

110 Prepared By Mr.S.BALABASKER,AP/ECE

SCHEMATICDIAGRAM:

DIFFERENTIAL MODE:

DIFFERENTIAL MODE OUTPUT:

111 Prepared By Mr.S.BALABASKER,AP/ECE

NETLIST:

********* Simulation Settings - General Section *********

.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools

v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT

*-------- Devices With SPICE.ORDER == 0.0 --------

***** Top Level *****

MNMOS_2_5v_1 N_1 N_3 N_4 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u

+$ $x=3793 $y=4300 $w=414 $h=600

MNMOS_2_5v_2 Out N_5 N_4 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u

+$ $x=6607 $y=4300 $w=414 $h=600 $m

MNMOS_2_5v_3 N_4 N_6 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u

+$ $x=5507 $y=3000 $w=414 $h=600 $m

MPMOS_2_5v_1 N_1 N_1 Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u

+$ $x=4207 $y=5300 $w=414 $h=600 $m

MPMOS_2_5v_2 Out N_1 Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u

+$ $x=6193 $y=5300 $w=414 $h=600

*-------- Devices With SPICE.ORDER > 0.0 --------

VV3 Vdd Gnd DC 5 $ $x=1200 $y=3800 $w=400 $h=600

VVbias N_6 Gnd DC 700m $ $x=6500 $y=2600 $w=400 $h=600

VV1 N_3 Gnd DC 0 AC 1 0 $ $x=3200 $y=2800 $w=400 $h=600

VV2 N_5 Gnd DC 0 AC 1 180 $ $x=7200 $y=2900 $w=400 $h=600

.PRINT AC Vdb(Out) $ $x=8350 $y=4050 $w=1500 $h=300

.PRINT AC Vp(Out) $ $x=8350 $y=4450 $w=1500 $h=300

.MEASURE AC AC_Measure_Gain_1 MAX vdb(Out) ON $ $x=8250 $y=5600 $w=1500 $h=200

.MEASURE AC AC_Measure_GainBandwidthProduct_1_Gain MAX vdb(Out) OFF

.MEASURE AC AC_Measure_GainBandwidthProduct_1_UGFreq WHEN Vdb(Out)=0 OFF

.MEASURE AC AC_Measure_GainBandwidthProduct_1

PARAM='AC_Measure_GainBandwidthProduct_1_Gain*AC_Measure_GainBandwidthProduct_1_UGFr

eq' +ON $ $x=8250 $y=5200 $w=1500 $h=200

********* Simulation Settings - Analysis Section *********

.ac dec 25 10 10X

********* Simulation Settings - Additional SPICE Commands *********

.end

112 Prepared By Mr.S.BALABASKER,AP/ECE

SCHEMATICDIAGRAM:

COMMON MODE:

COMMON MODE OUTPUT:

113 Prepared By Mr.S.BALABASKER,AP/ECE

NETLIST:

********* Simulation Settings - General Section *********

.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools

v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT

*-------- Devices With SPICE.ORDER == 0.0 --------

***** Top Level *****

MNMOS_2_5v_1 N_1 N_2 N_3 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u

+$ $x=3793 $y=4300 $w=414 $h=600

MNMOS_2_5v_2 Out N_2 N_3 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u

+$ $x=6607 $y=4300 $w=414 $h=600 $m

MNMOS_2_5v_3 N_3 N_5 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u

+$ $x=5507 $y=3000 $w=414 $h=600 $m

MPMOS_2_5v_1 N_1 N_1 Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u

+$ $x=4207 $y=5300 $w=414 $h=600 $m

MPMOS_2_5v_2 Out N_1 Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u

+$ $x=6193 $y=5300 $w=414 $h=600

*-------- Devices With SPICE.ORDER > 0.0 --------

VV3 Vdd Gnd DC 5 $ $x=1200 $y=3800 $w=400 $h=600

VVbias N_5 Gnd DC 700m $ $x=6500 $y=2600 $w=400 $h=600

VV1 N_2 Gnd DC 0 AC 1 0 $ $x=3200 $y=2800 $w=400 $h=600

.PRINT AC Vdb(Out) $ $x=8350 $y=4050 $w=1500 $h=300

.PRINT AC Vp(Out) $ $x=8350 $y=4450 $w=1500 $h=300

.MEASURE AC AC_Measure_Gain_1 MAX vdb(Out) ON $ $x=8250 $y=5600 $w=1500 $h=200

.MEASURE AC AC_Measure_GainBandwidthProduct_1_Gain MAX vdb(Out) OFF

.MEASURE AC AC_Measure_GainBandwidthProduct_1_UGFreq WHEN Vdb(Out)=0 OFF

114 Prepared By Mr.S.BALABASKER,AP/ECE

.MEASURE AC AC_Measure_GainBandwidthProduct_1

PARAM='AC_Measure_GainBandwidthProduct_1_Gain*AC_Measure_GainBandwidthProduct_1_UGFr

eq'

+ON $ $x=8250 $y=5200 $w=1500 $h=200

********* Simulation Settings - Analysis Section *********

.ac dec 25 10 10X

********* Simulation Settings - Additional SPICE Commands *********

.end

MEASUREMENT RESULT SUMMARY:

DIFFERNTIAL AMPLIFIER

 COMMOM MODE DIFFERNTIAL MODE

AC_Measure_Gain Ac= Ad=

AC_Measure_GainBandwidthProduct

CMRR = Ad / Ac

 =

RESULT

115 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
CMOS GATES

DATE:

AIM:

 To perform the functional verification of the CMOS gates through schematic entry.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No. SOFTWARE REQUIREMENTS QUANTITY

1 S-Edit, W-Edit, T-Edit using Tanner Tool. 1

b) Procedure for doing the experiment

S.NO DETAILS OF THE STEP

1 Draw the schematic of CMOS Gates using S-edit

2 Perform Transient Analysis of the CMOS Inverter

3 Obtain the output wave form from W-edit

4 Obtain the spice code using T-edit

c) THEORY: (CMOS NOT)

 Inverter consists of nMOS and pMOS transistor in series connected between VDD and GND.

 The gate of the two transistors are shorted and connected to the input. When the input to the

inverter A =0, nMOS transistor is OFF and pMOS transistor is ON. The output is pull-up to

VDD.When the input A=1, nMOS transistor is ON and pMOS transistor is OFF. The Output is

Pull-down to GND.

116 Prepared By Mr.S.BALABASKER,AP/ECE

CMOS NOT

SCHEMATIC DIAGRAM:

OUTPUT WAVEFORM:

117 Prepared By Mr.S.BALABASKER,AP/ECE

NETLIST:

********* Simulation Settings - General Section *********

.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools

v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT

*-------- Devices With SPICE.ORDER == 0.0 --------

***** Top Level *****

MNMOS_2_5v_1 Y A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $

$x=4293

+$y=3300 $w=414 $h=600

MPMOS_2_5v_1 Y A Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $

+$x=4293 $y=4500 $w=414 $h=600

*-------- Devices With SPICE.ORDER > 0.0 --------

VVdd_4 Vdd Gnd DC 5 $ $x=1200 $y=3800 $w=400 $h=600

VVdd_5 A Gnd PULSE(0 5 0 5n 5n 95n 200n) $ $x=2800 $y=3500 $w=400 $h=600

.PRINT TRAN V(A) $ $x=3250 $y=4650 $w=300 $h=1500 $r=270

.PRINT TRAN V(Y) $ $x=5350 $y=4650 $w=300 $h=1500 $r=270

********* Simulation Settings - Analysis Section *********

.tran 10ns 1000ns

********* Simulation Settings - Additional SPICE Commands *********

.end

118 Prepared By Mr.S.BALABASKER,AP/ECE

CMOS NAND

SCHEMATIC DIAGRAM:

OUTPUT WAVEFORM:

119 Prepared By Mr.S.BALABASKER,AP/ECE

NETLIST:

********* Simulation Settings - General Section *********

.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools

v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT

*-------- Devices With SPICE.ORDER == 0.0 --------

***** Top Level *****

MNMOS_2_5v_1 Y B N_1 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $

$x=5993

+$y=3200 $w=414 $h=600

MNMOS_2_5v_2 N_1 A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $

+$x=5993 $y=2200 $w=414 $h=600

MPMOS_2_5v_1 Y B Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $

+$x=5993 $y=4700 $w=414 $h=600

MPMOS_2_5v_2 Y A Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $

+$x=4493 $y=4700 $w=414 $h=600

*-------- Devices With SPICE.ORDER > 0.0 --------

VVdd_4 Vdd Gnd DC 5 $ $x=1200 $y=3800 $w=400 $h=600

VVoltageSource_1 A Gnd BIT({0101}) $ $x=3300 $y=2100 $w=400 $h=600

VVoltageSource_2 B Gnd BIT({0011}) $ $x=4900 $y=3000 $w=400 $h=600

.PRINT TRAN V(A) $ $x=2650 $y=3150 $w=1500 $h=300 $r=180

.PRINT TRAN V(B) $ $x=2650 $y=4050 $w=1500 $h=300 $r=180

.PRINT TRAN V(Y) $ $x=7050 $y=4850 $w=300 $h=1500 $r=270

********* Simulation Settings - Analysis Section *********

.tran 10ns 100ns

********* Simulation Settings - Additional SPICE Commands *********

.end

120 Prepared By Mr.S.BALABASKER,AP/ECE

CMOS NOR

SCHEMATIC DIAGRAM:

OUTPUT WAVEFORM:

121 Prepared By Mr.S.BALABASKER,AP/ECE

NETLIST:

********* Simulation Settings - General Section *********

.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools

v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT

*-------- Devices With SPICE.ORDER == 0.0 --------

***** Top Level *****

MNMOS_1 Y A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=4493

+$y=2300 $w=414 $h=600

MNMOS_2 Y B Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5993

+$y=2200 $w=414 $h=600

MPMOS_1 Y B N_3 Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=5993

+$y=3600 $w=414 $h=600

MPMOS_2 N_3 A Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=5993

+$y=4500 $w=414 $h=600

*-------- Devices With SPICE.ORDER > 0.0 --------

VVdd_4 Vdd Gnd DC 5 $ $x=700 $y=3800 $w=400 $h=600

Vv1 A Gnd BIT({0101}) $ $x=2800 $y=2100 $w=400 $h=600

VV2 B Gnd BIT({0011}) $ $x=3500 $y=2100 $w=400 $h=600

.PRINT TRAN V(A) $ $x=2150 $y=3150 $w=1500 $h=300 $r=180

.PRINT TRAN V(B) $ $x=2750 $y=3850 $w=1500 $h=300 $r=180

.PRINT TRAN V(Y) $ $x=7050 $y=3650 $w=300 $h=1500 $r=270

********* Simulation Settings - Analysis Section *********

.tran 10ns 100ns

********* Simulation Settings - Additional SPICE Commands *********

.end

122 Prepared By Mr.S.BALABASKER,AP/ECE

RESULT

123 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
HALF ADDER AND FULL ADDER

DATE:

AIM:

 To perform the functional verification of the Full and Half adder circuit through schematic entry.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No. SOFTWARE REQUIREMENTS QUANTITY

1 S-Edit, W-Edit, T-Edit using Tanner Tool. 1

b) Procedure for doing the experiment

S.NO DETAILS OF THE STEP

1 Draw the schematic of Full and Half adder Gates using S-edit

2 Perform Transient Analysis of the Full and Half adder circuit

3 Obtain the spice code using T-edit

4 Obtain the output wave form from W-edit

c) THEORY: (HALF ADDER)

The half adder adds two single binary digits A and B. It has two outputs, sum (S) and carry

(C). The carry signal represents an overflow into the next digit of a multi-digit addition.

The value of the sum is 2C + S. The simplest half-adder design, pictured on the right,

incorporates an XOR gate for S and an AND gate for C. With the addition of an OR gate to

combine their carry outputs, two half adders can be combined to make a full adder.The half

adder adds two input bits and generates a carry and sum, which are the two outputs of a

half adder. The input variables of a half adder are called the augend and addend bits. The

output variables are the sum and carry.

124 Prepared By Mr.S.BALABASKER,AP/ECE

HALF ADDER

SCHEMATIC DIAGRAM:

OUTPUT WAVEFORM:

125 Prepared By Mr.S.BALABASKER,AP/ECE

NETLIST:

********* Simulation Settings - General Section *********
.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools
v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT

*************** Subcircuits *****************
.subckt NAND2C A B Out Outbar Gnd Vdd

*-------- Devices With SPICE.ORDER < 0.0 --------
* Design: Generic_250nm_LogicGates / Cell: NAND2C / View: Main / Page:
* Designed by: Tanner EDA Library Development Team
* Organization: Tanner EDA - Tanner Research, Inc.
* Info: 2 Input NAND with complementary output.
* Date: 5/30/2008 6:42:21 PM
* Revision: 10 $ $x=7600 $y=600 $w=3600 $h=1200

*-------- Devices With SPICE.ORDER == 0.0 --------
MM1n 1 B Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3493 $y=2800
+$w=414 $h=600
MM2n Out A 1 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3493 $y=3600
+$w=414 $h=600
MM3p Out A Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $
+$x=3493 $y=4400 $w=414 $h=600
MM4p Out B Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $
+$x=4693 $y=4400 $w=414 $h=600
MM5n Outbar Out Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5893
+$y=3600 $w=414 $h=600
MM6p Outbar Out Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u
+$ $x=5893 $y=4400 $w=414 $h=600
.ends

.subckt XOR2 A B Out Gnd Vdd

*-------- Devices With SPICE.ORDER < 0.0 --------
* Design: Generic_250nm_LogicGates / Cell: XOR2 / View: Main / Page:
* Designed by: Tanner CES Design Team
* Organization: Tanner Research, Inc.
* Info: TSMC 0.25u Digital Standard Cell Library
* Date: 10/13/2008 3:48:47 PM
* Revision: 3 $ $x=7600 $y=600 $w=3600 $h=1200

*-------- Devices With SPICE.ORDER == 0.0 --------
MM1p 1 A Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=2907
+$y=5000 $w=414 $h=600 $m
MM2p 2 A Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=4393
+$y=5000 $w=414 $h=600
MM3p 4 B 1 Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=2493 $y=4100
+$w=414 $h=600
MM4p 3 B Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=6207
+$y=5000 $w=414 $h=600 $m
MM5p Out 4 2 Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=4393
+$y=4100 $w=414 $h=600
MM6p Out 4 3 Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=6207
+$y=4100 $w=414 $h=600 $m
MM7n Out 4 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=7393

126 Prepared By Mr.S.BALABASKER,AP/ECE

+$y=4100 $w=414 $h=600
MM8n 4 B Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=1893 $y=2800
+$w=414 $h=600
MM9n 4 A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3507 $y=2800
+$w=414 $h=600 $m
MM10n Out B 5 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5507 $y=2800
+$w=414 $h=600 $m
MM11n 5 A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5093 $y=2000
+$w=414 $h=600
.ends

*-------- Devices With SPICE.ORDER == 0.0 --------
***** Top Level *****
XNAND2C_1 A B N_1 CARRY Gnd Vdd NAND2C $ $x=4700 $y=3975 $w=1000 $h=550
XXOR2_1 A B SUM Gnd Vdd XOR2 $ $x=4700 $y=4900 $w=1000 $h=500

*-------- Devices With SPICE.ORDER > 0.0 --------
Vv3 Vdd Gnd DC 5 $ $x=700 $y=4400 $w=400 $h=600
Vv1 B Gnd BIT({0011}) $ $x=3200 $y=3400 $w=400 $h=600
VV2 A Gnd BIT({0101}) $ $x=3900 $y=3400 $w=400 $h=600
.PRINT TRAN V(A) $ $x=2550 $y=5150 $w=1500 $h=300 $r=180
.PRINT TRAN V(B) $ $x=2450 $y=4450 $w=1500 $h=300 $r=180
.PRINT TRAN V(CARRY) $ $x=6150 $y=3250 $w=1500 $h=300
.PRINT TRAN V(SUM) $ $x=6150 $y=4550 $w=1500 $h=300
********* Simulation Settings - Analysis Section *********
.tran 10n 100n
********* Simulation Settings - Additional SPICE Commands *********
.end

127 Prepared By Mr.S.BALABASKER,AP/ECE

FULL ADDER

SCHEMATIC DIAGRAM:

OUTPUT WAVEFORM:

NETLIST:

128 Prepared By Mr.S.BALABASKER,AP/ECE

********* Simulation Settings - General Section *********
.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools
v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT

*************** Subcircuits *****************
.subckt NAND2C A B Out Outbar Gnd Vdd

*-------- Devices With SPICE.ORDER < 0.0 --------
* Design: Generic_250nm_LogicGates / Cell: NAND2C / View: Main / Page:
* Designed by: Tanner EDA Library Development Team
* Organization: Tanner EDA - Tanner Research, Inc.
* Info: 2 Input NAND with complementary output.
* Date: 5/30/2008 6:42:21 PM
* Revision: 10 $ $x=7600 $y=600 $w=3600 $h=1200

*-------- Devices With SPICE.ORDER == 0.0 --------
MM1n 1 B Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3493 $y=2800
+$w=414 $h=600
MM2n Out A 1 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3493 $y=3600
+$w=414 $h=600
MM3p Out A Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $
+$x=3493 $y=4400 $w=414 $h=600
MM4p Out B Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $
+$x=4693 $y=4400 $w=414 $h=600
MM5n Outbar Out Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5893
+$y=3600 $w=414 $h=600
MM6p Outbar Out Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u
+$ $x=5893 $y=4400 $w=414 $h=600
.ends

.subckt NOR3C A B C Out Outbar Gnd Vdd

*-------- Devices With SPICE.ORDER < 0.0 --------
* Design: Generic_250nm_LogicGates / Cell: NOR3C / View: Main / Page:
* Designed by: Author
* Organization: Organization
* Info: Info
* Date: 5/30/2008 6:42:21 PM
* Revision: 53 $ $x=7600 $y=600 $w=3600 $h=1200

*-------- Devices With SPICE.ORDER == 0.0 --------
MM1n Out A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=2093
+$y=2100 $w=414 $h=600
MM2p Out C 2 Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $ $x=2093
+$y=2800 $w=414 $h=600
MM3p 2 B 1 Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $ $x=2093
+$y=3600 $w=414 $h=600
MM4p 1 A Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $ $x=2093
+$y=4400 $w=414 $h=600
MM5n Out B Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3593
+$y=2100 $w=414 $h=600
MM6n Out C Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5093
+$y=2100 $w=414 $h=600
MM7n Outbar Out Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=6393
+$y=2100 $w=414 $h=600
MM8p Outbar Out Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u

129 Prepared By Mr.S.BALABASKER,AP/ECE

+$ $x=6393 $y=2900 $w=414 $h=600
.ends

.subckt XOR2 A B Out Gnd Vdd

*-------- Devices With SPICE.ORDER < 0.0 --------
* Design: Generic_250nm_LogicGates / Cell: XOR2 / View: Main / Page:
* Designed by: Tanner CES Design Team
* Organization: Tanner Research, Inc.
* Info: TSMC 0.25u Digital Standard Cell Library
* Date: 10/13/2008 3:48:47 PM
* Revision: 3 $ $x=7600 $y=600 $w=3600 $h=1200

*-------- Devices With SPICE.ORDER == 0.0 --------
MM1p 1 A Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=2907
+$y=5000 $w=414 $h=600 $m
MM2p 2 A Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=4393
+$y=5000 $w=414 $h=600
MM3p 4 B 1 Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=2493 $y=4100
+$w=414 $h=600
MM4p 3 B Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=6207
+$y=5000 $w=414 $h=600 $m
MM5p Out 4 2 Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=4393
+$y=4100 $w=414 $h=600
MM6p Out 4 3 Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=6207
+$y=4100 $w=414 $h=600 $m
MM7n Out 4 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=7393
+$y=4100 $w=414 $h=600
MM8n 4 B Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=1893 $y=2800
+$w=414 $h=600
MM9n 4 A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3507 $y=2800
+$w=414 $h=600 $m
MM10n Out B 5 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5507 $y=2800
+$w=414 $h=600 $m
MM11n 5 A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5093 $y=2000
+$w=414 $h=600
.ends

*-------- Devices With SPICE.ORDER == 0.0 --------
***** Top Level *****
XNAND2C_1 A B N_2 N_1 Gnd Vdd NAND2C $ $x=5700 $y=3575 $w=1000 $h=550
XNAND2C_2 B C N_5 N_3 Gnd Vdd NAND2C $ $x=5700 $y=2875 $w=1000 $h=550
XNAND2C_3 A C N_7 N_6 Gnd Vdd NAND2C $ $x=5700 $y=2175 $w=1000 $h=550
XNOR3C_1 N_1 N_3 N_6 N_8 CARRY Gnd Vdd NOR3C $ $x=7202 $y=2775 $w=1004 $h=550
XXOR2_1 A B N_4 Gnd Vdd XOR2 $ $x=5600 $y=4900 $w=1000 $h=500
XXOR2_2 N_4 C SUM Gnd Vdd XOR2 $ $x=7000 $y=4600 $w=1000 $h=500

*-------- Devices With SPICE.ORDER > 0.0 --------
Vv4 Vdd Gnd DC 5 $ $x=500 $y=4400 $w=400 $h=600
VV1 A Gnd BIT({01010101}) $ $x=3800 $y=3000 $w=400 $h=600
Vv2 B Gnd BIT({00110011}) $ $x=3200 $y=3000 $w=400 $h=600
Vv3 C Gnd BIT({00001111}) $ $x=2600 $y=3000 $w=400 $h=600
.PRINT TRAN V(A) $ $x=1650 $y=5650 $w=1500 $h=300 $r=180
.PRINT TRAN V(B) $ $x=1650 $y=5050 $w=1500 $h=300 $r=180
.PRINT TRAN V(C) $ $x=1650 $y=4450 $w=1500 $h=300 $r=180
.PRINT TRAN V(CARRY) $ $x=8650 $y=2250 $w=1500 $h=300

130 Prepared By Mr.S.BALABASKER,AP/ECE

.PRINT TRAN V(SUM) $ $x=8450 $y=4250 $w=1500 $h=300
********* Simulation Settings - Analysis Section *********
.tran 10n 100n
********* Simulation Settings - Additional SPICE Commands *********
.end

RESULT:

131 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
4-BIT COUNTER

DATE:

AIM:

 To perform the functional verification of the 4-bit counter circuit through schematic entry.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No. SOFTWARE REQUIREMENTS QUANTITY

1 S-Edit, W-Edit, T-Edit using Tanner Tool. 1

b) Procedure for doing the experiment

S.NO DETAILS OF THE STEP

1 Draw the schematic of 4-bit counter using S-edit

2 Perform Transient Analysis of the 4-bit counter

3 Obtain the spice code using T-edit

4 Obtain the output wave form from W-edit

c) THEORY: (COUNTER)

132 Prepared By Mr.S.BALABASKER,AP/ECE

4-BIT COUNTER

SCHEMATIC DIAGRAM:

133 Prepared By Mr.S.BALABASKER,AP/ECE

OUTPUT WAVEFORM:

134 Prepared By Mr.S.BALABASKER,AP/ECE

NETLIST:

********* Simulation Settings - General Section *********
.lib "C:\Documents and Settings\ece01\My Documents\Tanner EDA\Tanner Tools
v15.0\Process\Generic_250nm\Generic_250nm_Tech\Generic_250nm.lib" TT
*************** Subcircuits *****************
.subckt DFFC Clk Clr Data Q QB Gnd Vdd
*-------- Devices With SPICE.ORDER < 0.0 --------
* Design: Generic_250nm_LogicGates / Cell: DFFC / View: Main / Page:
* Designed by: Tanner EDA Library Development Team
* Organization: Tanner EDA - Tanner Research, Inc.
* Info: D Flip-Flop with Clear
* Date: 10/15/2008 12:04:43 PM
* Revision: 144 $ $x=7600 $y=600 $w=3600 $h=1200
* Design: Generic_250nm_LogicGates / Cell: DFFC / View: Main / Page:
* Designed by: Tanner EDA Library Development Team
* Organization: Tanner EDA - Tanner Research, Inc.
* Info: D Flip-Flop with Clear
* Date: 10/15/2008 12:04:43 PM
* Revision: 144 $ $x=7600 $y=600 $w=3600 $h=1200

*-------- Devices With SPICE.ORDER == 0.0 --------
MM1p CB Clk Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=1293
+$y=1800 $w=414 $h=600
MM2n CB Clk Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=1293
+$y=1000 $w=414 $h=600
MM3p C CB Vdd Vdd PMOS25 W=3u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=2693
+$y=1800 $w=414 $h=600
MM4n C CB Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=2693
$y=1000
+$w=414 $h=600
MM5p 3 Data Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=3993
+$y=5600 $w=414 $h=600
MM6p 4 C 3 Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=3993
+$y=4700 $w=414 $h=600
MM7n 4 CB 5 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3993
$y=3900
+$w=414 $h=600
MM8n 5 Data Gnd 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3993
+$y=3100 $w=414 $h=600
MM9p 6 10 Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=5693
+$y=5600 $w=414 $h=600
MM10p 4 CB 6 Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=6107
+$y=4700 $w=414 $h=600 $m
MM11n 4 C 7 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5693
$y=3900
+$w=414 $h=600
MM12n 7 10 8 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5693
$y=3100
+$w=414 $h=600
MM13n 8 Clr Gnd 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5693
+$y=2300 $w=414 $h=600
MM14p 9 Clr Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $

135 Prepared By Mr.S.BALABASKER,AP/ECE

$x=7293
+$y=5600 $w=414 $h=600
MM15p 4 CB 9 Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $ $x=7293
+$y=4700 $w=414 $h=600
MM16p 10 4 Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=7193
+$y=3400 $w=414 $h=600
MM17n 10 4 Gnd 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=7193
+$y=2600 $w=414 $h=600
MM18p 11 10 Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=1393
+$y=5200 $w=414 $h=600
MM19p 12 CB 11 Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=1393
+$y=4400 $w=414 $h=600
MM20An 12 Clr 15 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=1393
+$y=3600 $w=414 $h=600
MM20n 15 C 13 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=1393
+$y=2800 $w=414 $h=600
MM21n 13 10 Gnd 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=1393
+$y=2000 $w=414 $h=600
MM22p 17 Clr Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=3093
+$y=5200 $w=414 $h=600
MM23p 12 C 17 Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=3093
+$y=4400 $w=414 $h=600
MM24n 12 CB 17 0 NMOS25 W=1.50u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=3093
+$y=3600 $w=414 $h=600
MM25Ap Q 17 Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=5293
+$y=4400 $w=414 $h=600
MM25p 17 16 Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=4493
+$y=5200 $w=414 $h=600
MM26An Q 17 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=5293
+$y=3600 $w=414 $h=600
MM26n 17 Clr 14 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=4493
+$y=2800 $w=414 $h=600
MM27n 14 16 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=4493
+$y=2000 $w=414 $h=600
MM28Ap QB 16 Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=8193
+$y=4300 $w=414 $h=600
MM28p 16 12 Vdd Vdd PMOS25 W=3.00u L=250n AS=1.95p PS=7.3u AD=1.95p PD=7.3u $
$x=6693
+$y=4400 $w=414 $h=600
MM29An QB 16 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $
$x=8193
+$y=3500 $w=414 $h=600
MM29n 16 12 Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=6693
+$y=3600 $w=414 $h=600
.ends
.subckt INV A Out Gnd Vdd
*-------- Devices With SPICE.ORDER < 0.0 --------
* Design: Generic_250nm_LogicGates / Cell: INV / View: Main / Page:

136 Prepared By Mr.S.BALABASKER,AP/ECE

* Designed by: Tanner EDA Library Development Team
* Organization: Tanner EDA - Tanner Research, Inc.
* Info: Inverter
* Date: 5/30/2008 4:06:39 PM
* Revision: 13 $ $x=7600 $y=600 $w=3600 $h=1200
*-------- Devices With SPICE.ORDER == 0.0 --------
MM1n Out A Gnd 0 NMOS25 W=1.5u L=250n AS=975f PS=4.3u AD=975f PD=4.3u $ $x=4593
+$y=2600 $w=414 $h=600
MM2p Out A Vdd Vdd PMOS25 W=3u L=250n M=2 AS=1.125p PS=3.75u AD=1.95p PD=7.3u $
+$x=4593 $y=3600 $w=414 $h=600
.ends

*-------- Devices With SPICE.ORDER == 0.0 --------
***** Top Level *****
XDFFC_1 clk N_1 N_2 D N_2 Gnd Vdd DFFC $ $x=3100 $y=3400 $w=800 $h=1000
XDFFC_2 D N_1 N_4 C N_4 Gnd Vdd DFFC $ $x=4900 $y=3400 $w=800 $h=1000
XDFFC_3 C N_1 N_5 B N_5 Gnd Vdd DFFC $ $x=6700 $y=3400 $w=800 $h=1000
XDFFC_4 B N_1 N_6 A N_6 Gnd Vdd DFFC $ $x=8700 $y=3400 $w=800 $h=1000
XINV_1 rst N_1 Gnd Vdd INV $ $x=2300 $y=4100 $w=600 $h=400

*-------- Devices With SPICE.ORDER > 0.0 --------
Vv1 Vdd Gnd DC 5 $ $x=800 $y=6000 $w=400 $h=600
Vv2 rst Gnd PULSE(0 5 0 1n 1n 95n 10u) $ $x=700 $y=3500 $w=400 $h=600
Vv3 clk Gnd PULSE(0 5 0 5n 5n 95n 200n) $ $x=2200 $y=2700 $w=400 $h=600
.PRINT TRAN V(A) $ $x=9550 $y=4550 $w=300 $h=1500 $r=270
.PRINT TRAN V(B) $ $x=7950 $y=4450 $w=300 $h=1500 $r=270
.PRINT TRAN V(C) $ $x=5950 $y=4550 $w=300 $h=1500 $r=270
.PRINT TRAN V(clk) $ $x=1650 $y=2550 $w=300 $h=1500 $r=90
.PRINT TRAN V(D) $ $x=4250 $y=4450 $w=300 $h=1500 $r=270
.PRINT TRAN V(rst) $ $x=950 $y=4550 $w=1500 $h=300 $r=180
********* Simulation Settings - Analysis Section *********
.tran 1u 5u
********* Simulation Settings - Additional SPICE Commands *********
.end

RESULT:

137 Prepared By Mr.S.BALABASKER,AP/ECE

EXP.NO:
LAYOUT CMOS INVERTOR

DATE:

AIM:

 To draw the layout of CMOS Inverter using L-Edit and extract the SPICE code.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No. SOFTWARE REQUIREMENTS QUANTITY

1 L-Edit using Tanner Tool. 1

b) Procedure for doing the experiment

S.NO DETAILS OF THE STEP

1 Draw the CMOS Inverter layout by obeying the Lamda Rules using L-edit.

2

i.Poly-2λ

ii.Activecontact-2λ

iii.ActiveContact–Metal-1λ

iv.ActiveContact–Activeregion-2λ

v.ActiveRegion–Pselect-3λ

vi.Pselect–nWell-3λ

3 Check DRC to verify whether any region violate the Lamda rule

4 Setup the extraction and extract the spice code using T-spice.

138 Prepared By Mr.S.BALABASKER,AP/ECE

CMOS INVERTER:

LAYOUT DAIGRAM:

139 Prepared By Mr.S.BALABASKER,AP/ECE

OUTPUT WAVEFORM:

140 Prepared By
Mr.S.BALABASKER,AP/ECE

RESULT:

141 Prepared By
Mr.S.BALABASKER,AP/ECE

EXP.NO:
 AUTOMATIC LAYOUT GENERATION

DATE:

AIM:

 To generate the automatic Layout from the schematic using the Tanner tool and verify

the layout using simulation.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No. SOFTWARE REQUIREMENTS QUANTITY

1 S-Edit,L-Edit using Tanner Tool 1

b) Procedure for doing the experiment

S.NO DETAILS OF THE STEP

1 Draw the schematic using S -Edit and verify the output in W-Edit.

2 Extract the schematic and store it in another location

3 Open the L-Edit, open the design in Ring VCO

4 Create the new cell

5 Open the schematic file(.sdl) using the SDL Navigator

6 Do the necessary connections as per the design.

7 Name the ports and check the design for the DRC Rules

8
Locate the Destination file in the setup Extract window and extract

the layout.

9
Include the Library and the print voltage statements in the net list

which is obtained.
10 Verify the layout design using W-Edit.

142 Prepared By Mr.S.BALABASKER,AP/ECE

SCHEMATIC DIAGRAM:

143 Prepared By Mr.S.BALABASKER,AP/ECE

LAYOUT GENERATION:

144 St.Annes College of Engg and tech Prepared By Mr.S.BALABASKER,AP/ECE

SIMULATED WAVEFORM:

RESULT:

145 St.Annes College of Engg and tech Prepared By Mr.S.BALABASKER,AP/ECE

APPENDIX (FPGA PIN DETAILS)

CLOCK SOURCE:\

CLOCK INPUT FPGA PIN

CLK A8

146 St.Annes College of Engg and tech Prepared By Mr.S.BALABASKER,AP/ECE

APPENDIX (FPGA PIN DETAILS)

147 St.Annes College of Engg and tech Prepared By Mr.S.BALABASKER,AP/ECE

148 St.Annes College of Engg and tech Prepared By Mr.S.BALABASKER,AP/ECE

149 St.Annes College of Engg and tech Prepared By Mr.S.BALABASKER,AP/ECE

150 St.Annes College of Engg and tech Prepared By Mr.S.BALABASKER,AP/ECE

ADDITIONAL PROBLEMS

Problems to be done by student

XILINX:

1. NOR Gate Expression For Y=AB+CD

2. NOR GATE EXPRESSION FOR Y=AB+CD

3. 1:4 Demux

4. Full Adder Using NAND Gate

5. 4:1 mux using 2:1 mux

6. 8:1 mux using 2:1 mux

7. 1:8 demux (all 3 modelling)

8. BCD Encoder

9. Ripple Counter using T Flip Flop

10. T,JK, RS,D flip flop

TANNER

11. CMOS NAND (S-Edit)

12. CMOS NOR (S-Edit)

13. CMOS NAND (L-Edit)

14. CMOS NOR (L-Edit)

15. NOR Gate Expression For Y=AB+CD (S-Edit)

16. NOR GATE EXPRESSION FOR Y=AB+CD (S-Edit)

